Medical image segmentation models adapting to new tasks in a training-free manner through in-context learning is an exciting advancement. Universal segmentation models aim to generalize across the diverse modality of medical images, yet their effectiveness often diminishes when applied to out-of-distribution (OOD) data modalities and tasks, requiring intricate fine-tuning of model for optimal performance. For addressing this challenge, we introduce SegICL, a novel approach leveraging In-Context Learning (ICL) for image segmentation. Unlike existing methods, SegICL has the capability to employ text-guided segmentation and conduct in-context learning with a small set of image-mask pairs, eliminating the need for training the model from scratch or fine-tuning for OOD tasks (including OOD modality and dataset). Extensive experimental validation of SegICL demonstrates a positive correlation between the number of prompt samples and segmentation performance on OOD modalities and tasks. This indicates that SegICL effectively address new segmentation tasks based on contextual information. Additionally, SegICL also exhibits comparable segmentation performance to mainstream models on OOD and in-distribution tasks. Our code will be released soon.
Large transformer models pretrained on offline reinforcement learning datasets have demonstrated remarkable in-context reinforcement learning (ICRL) capabilities, where they can make good decisions when prompted with interaction trajectories from unseen environments. However, when and how transformers can be trained to perform ICRL have not been theoretically well-understood. In particular, it is unclear which reinforcement-learning algorithms transformers can perform in context, and how distribution mismatch in offline training data affects the learned algorithms. This paper provides a theoretical framework that analyzes supervised pretraining for ICRL. This includes two recently proposed training methods -- algorithm distillation and decision-pretrained transformers. First, assuming model realizability, we prove the supervised-pretrained transformer will imitate the conditional expectation of the expert algorithm given the observed trajectory. The generalization error will scale with model capacity and a distribution divergence factor between the expert and offline algorithms. Second, we show transformers with ReLU attention can efficiently approximate near-optimal online reinforcement learning algorithms like LinUCB and Thompson sampling for stochastic linear bandits, and UCB-VI for tabular Markov decision processes. This provides the first quantitative analysis of the ICRL capabilities of transformers pretrained from offline trajectories.
Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation and shaping of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates shaped dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes or unshaped dense rewards with a constant function across timesteps, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at //text-to-reward.github.io/ .
Existing text-to-image models still struggle to generate images of multiple objects, especially in handling their spatial positions, relative sizes, overlapping, and attribute bindings. To efficiently address these challenges, we develop a training-free Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object with intricate planning and feedback control. MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion, conditioned on previously generated objects. Unlike existing LLM-grounded methods, MuLan only produces a high-level plan at the beginning while the exact size and location of each object are determined upon each sub-task by an LLM and attention guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt. Hence, each model in every step of MuLan only needs to address an easy sub-task it is specialized for. The multi-step process also allows human users to monitor the generation process and make preferred changes at any intermediate step via text prompts, thereby improving the human-AI collaboration experience. We collect 200 prompts containing multi-objects with spatial relationships and attribute bindings from different benchmarks to evaluate MuLan. The results demonstrate the superiority of MuLan in generating multiple objects over baselines and its creativity when collaborating with human users. The code is available at //github.com/measure-infinity/mulan-code.
Federated learning (FL) enables collaborative machine learning across distributed data owners, but data heterogeneity poses a challenge for model calibration. While prior work focused on improving accuracy for non-iid data, calibration remains under-explored. This study reveals existing FL aggregation approaches lead to sub-optimal calibration, and theoretical analysis shows despite constraining variance in clients' label distributions, global calibration error is still asymptotically lower bounded. To address this, we propose a novel Federated Calibration (FedCal) approach, emphasizing both local and global calibration. It leverages client-specific scalers for local calibration to effectively correct output misalignment without sacrificing prediction accuracy. These scalers are then aggregated via weight averaging to generate a global scaler, minimizing the global calibration error. Extensive experiments demonstrate FedCal significantly outperforms the best-performing baseline, reducing global calibration error by 47.66% on average.
SimSiam is a prominent self-supervised learning method that achieves impressive results in various vision tasks under static environments. However, it has two critical issues: high sensitivity to hyperparameters, especially weight decay, and unsatisfactory performance in online and continual learning, where neuroscientists believe that powerful memory functions are necessary, as in brains. In this paper, we propose PhiNet, inspired by a hippocampal model based on the temporal prediction hypothesis. Unlike SimSiam, which aligns two augmented views of the original image, PhiNet integrates an additional predictor block that estimates the original image representation to imitate the CA1 region in the hippocampus. Moreover, we model the neocortex inspired by the Complementary Learning Systems theory with a momentum encoder block as a slow learner, which works as long-term memory. We demonstrate through analysing the learning dynamics that PhiNet benefits from the additional predictor to prevent the complete collapse of learned representations, a notorious challenge in non-contrastive learning. This dynamics analysis may partially corroborate why this hippocampal model is biologically plausible. Experimental results demonstrate that PhiNet is more robust to weight decay and performs better than SimSiam in memory-intensive tasks like online and continual learning.
Machine learning (ML) models are increasingly used in various applications, from recommendation systems in e-commerce to diagnosis prediction in healthcare. In this paper, we present a novel dynamic framework for thinking about the deployment of ML models in a performative, human-ML collaborative system. In our framework, the introduction of ML recommendations changes the data generating process of human decisions, which are only a proxy to the ground truth and which are then used to train future versions of the model. We show that this dynamic process in principle can converge to different stable points, i.e. where the ML model and the Human+ML system have the same performance. Some of these stable points are suboptimal with respect to the actual ground truth. We conduct an empirical user study with 1,408 participants to showcase this process. In the study, humans solve instances of the knapsack problem with the help of machine learning predictions. This is an ideal setting because we can see how ML models learn to imitate human decisions and how this learning process converges to a stable point. We find that for many levels of ML performance, humans can improve the ML predictions to dynamically reach an equilibrium performance that is around 92% of the maximum knapsack value. We also find that the equilibrium performance could be even higher if humans rationally followed the ML recommendations. Finally, we test whether monetary incentives can increase the quality of human decisions, but we fail to find any positive effect. Our results have practical implications for the deployment of ML models in contexts where human decisions may deviate from the indisputable ground truth.
Federated learning (FL) is a decentralized learning technique that enables participating devices to collaboratively build a shared Machine Leaning (ML) or Deep Learning (DL) model without revealing their raw data to a third party. Due to its privacy-preserving nature, FL has sparked widespread attention for building Intrusion Detection Systems (IDS) within the realm of cybersecurity. However, the data heterogeneity across participating domains and entities presents significant challenges for the reliable implementation of an FL-based IDS. In this paper, we propose an effective method called Statistical Averaging (StatAvg) to alleviate non-independently and identically (non-iid) distributed features across local clients' data in FL. In particular, StatAvg allows the FL clients to share their individual data statistics with the server, which then aggregates this information to produce global statistics. The latter are shared with the clients and used for universal data normalisation. It is worth mentioning that StatAvg can seamlessly integrate with any FL aggregation strategy, as it occurs before the actual FL training process. The proposed method is evaluated against baseline approaches using datasets for network and host Artificial Intelligence (AI)-powered IDS. The experimental results demonstrate the efficiency of StatAvg in mitigating non-iid feature distributions across the FL clients compared to the baseline methods.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.