亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reaction coordinates (RCs) are low-dimensional representations of complex dynamical systems that capture their long-term dynamics. In this work, we focus on the criteria of lumpability and decomposability, previously established for assessing RCs, and propose a new flow matching approach for the analysis and optimization of reaction coordinates based on these criteria. This method effectively utilizes data to quantitatively determine whether a given RC satisfies these criteria and enables end-to-end optimization of the reaction coordinate mapping model. Furthermore, we provide a theoretical analysis of the relationship between the loss function used in our approach and the operator error induced by dimension reduction.

相關內容

While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named \textbf{LBS3}, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.

The rise of spatiotemporal data and the need for efficient geospatial modeling have spurred interest in automating these tasks with large language models (LLMs). However, general LLMs often generate errors in geospatial code due to a lack of domain-specific knowledge on functions and operators. To address this, a retrieval-augmented generation (RAG) approach, utilizing an external knowledge base of geospatial functions and operators, is proposed. This study introduces a framework to construct such a knowledge base, leveraging geospatial script semantics. The framework includes: Function Semantic Framework Construction (Geo-FuSE), Frequent Operator Combination Statistics (Geo-FuST), and Semantic Mapping (Geo-FuM). Techniques like Chain-of-Thought, TF-IDF, and the APRIORI algorithm are utilized to derive and align geospatial functions. An example knowledge base, Geo-FuB, built from 154,075 Google Earth Engine scripts, is available on GitHub. Evaluation metrics show a high accuracy, reaching 88.89% overall, with structural and semantic accuracies of 92.03% and 86.79% respectively. Geo-FuB's potential to optimize geospatial code generation through the RAG and fine-tuning paradigms is highlighted.

Recently, several methods have leveraged deep generative modeling to produce example-based explanations of decision algorithms for high-dimensional input data. Despite promising results, a disconnect exists between these methods and the classical explainability literature, which focuses on lower-dimensional data with semantically meaningful features. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a novel probabilistic framework for local example-based explanations. Our framework integrates the critical characteristics of classical local explanation desiderata while being amenable to high-dimensional data and their modeling through deep generative models. Our aim is to facilitate communication, foster rigor and transparency, and improve the quality of peer discussion and research progress.

Accurate prediction of human behavior is crucial for effective human-robot interaction (HRI) systems, especially in dynamic environments where real-time decisions are essential. This paper addresses the challenge of forecasting future human behavior using multivariate time series data from wearable sensors, which capture various aspects of human movement. The presence of hidden confounding factors in this data often leads to biased predictions, limiting the reliability of traditional models. To overcome this, we propose a robust predictive model that integrates deconfounding techniques with advanced time series prediction methods, enhancing the model's ability to isolate true causal relationships and improve prediction accuracy. Evaluation on real-world datasets demonstrates that our approach significantly outperforms traditional methods, providing a more reliable foundation for responsive and adaptive HRI systems.

We introduce the term Super-Reactive Systems to refer to reactive systems whose construction and behavior are complex, constantly changing and evolving, and heavily interwoven with other systems and the physical world. Finding hidden faults in such systems early in planning and development is critical for human safety, the environment, society and the economy. However, the complexity of the system and its interactions and the absence of adequate technical details pose a great obstacle. We propose an architecture for models and tools to overcome such barriers and enable simulation, systematic analysis, and fault detection and handling, early in the development of super-reactive systems. The approach is facilitated by the inference and abstraction capabilities and the power and knowledge afforded by large language models and associated AI tools. It is based on: (i) deferred, just-in-time interpretation of model elements that are stored in natural language form, and (ii) early capture of tacit interdependencies among seemingly orthogonal requirements.

Control Barrier Functions (CBFs) have proven to be an effective tool for performing safe control synthesis for nonlinear systems. However, guaranteeing safety in the presence of disturbances and input constraints for high relative degree systems is a difficult problem. In this work, we propose the Robust Policy CBF (RPCBF), a practical method of constructing CBF approximations that is easy to implement and robust to disturbances via the estimation of a value function. We demonstrate the effectiveness of our method in simulation on a variety of high relative degree input-constrained systems. Finally, we demonstrate the benefits of RPCBF in compensating for model errors on a hardware quadcopter platform by treating the model errors as disturbances. The project page can be found at //oswinso.xyz/rpcbf.

Retrieval augmented generation (RAG) pipelines are commonly used in tasks such as question-answering (QA), relying on retrieving relevant documents from a vector store computed using a pretrained embedding model. However, if the retrieved context is inaccurate, the answers generated using the large language model (LLM) may contain errors or hallucinations. Although pretrained embedding models have advanced, adapting them to new domains remains challenging. Fine-tuning is a potential solution, but industry settings often lack the necessary fine-tuning data. To address these challenges, we propose REFINE, a novel technique that generates synthetic data from available documents and then uses a model fusion approach to fine-tune embeddings for improved retrieval performance in new domains, while preserving out-of-domain capability. We conducted experiments on the two public datasets: SQUAD and RAG-12000 and a proprietary TOURISM dataset. Results demonstrate that even the standard fine-tuning with the proposed data augmentation technique outperforms the vanilla pretrained model. Furthermore, when combined with model fusion, the proposed approach achieves superior performance, with a 5.76% improvement in recall on the TOURISM dataset, and 6.58 % and 0.32% enhancement on SQUAD and RAG-12000 respectively.

Large language models (LLMs) have received considerable interest recently due to their outstanding reasoning and comprehension capabilities. This work explores applying LLMs to vehicular networks, aiming to jointly optimize vehicle-to-infrastructure (V2I) communications and autonomous driving (AD) policies. We deploy LLMs for AD decision-making to maximize traffic flow and avoid collisions for road safety, and a double deep Q-learning algorithm (DDQN) is used for V2I optimization to maximize the received data rate and reduce frequent handovers. In particular, for LLM-enabled AD, we employ the Euclidean distance to identify previously explored AD experiences, and then LLMs can learn from past good and bad decisions for further improvement. Then, LLM-based AD decisions will become part of states in V2I problems, and DDQN will optimize the V2I decisions accordingly. After that, the AD and V2I decisions are iteratively optimized until convergence. Such an iterative optimization approach can better explore the interactions between LLMs and conventional reinforcement learning techniques, revealing the potential of using LLMs for network optimization and management. Finally, the simulations demonstrate that our proposed hybrid LLM-DDQN approach outperforms the conventional DDQN algorithm, showing faster convergence and higher average rewards.

Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司