This article presents MAPS$^2$ : a distributed algorithm that allows multi-robot systems to deliver coupled tasks expressed as Signal Temporal Logic (STL) constraints. Classical control theoretical tools addressing STL constraints either adopt a limited fragment of the STL formula or require approximations of min/max operators, whereas works maximising robustness through optimisation-based methods often suffer from local minima, relaxing any completeness arguments due to the NP-hard nature of the problem. Endowed with probabilistic guarantees, MAPS$^2$ provides an anytime algorithm that iteratively improves the robots' trajectories. The algorithm selectively imposes spatial constraints by taking advantage of the temporal properties of the STL. The algorithm is distributed, in the sense that each robot calculates its trajectory by communicating only with its immediate neighbours as defined via a communication graph. We illustrate the efficiency of MAPS$^2$ by conducting extensive simulation and experimental studies, verifying the generation of STL satisfying trajectories.
Safe deployment of time-series classifiers for real-world applications relies on the ability to detect the data which is not generated from the same distribution as training data. This task is referred to as out-of-distribution (OOD) detection. We consider the novel problem of OOD detection for the time-series domain. We discuss the unique challenges posed by time-series data and explain why prior methods from the image domain will perform poorly. Motivated by these challenges, this paper proposes a novel {\em Seasonal Ratio Scoring (SRS)} approach. SRS consists of three key algorithmic steps. First, each input is decomposed into class-wise semantic component and remainder. Second, this decomposition is employed to estimate the class-wise conditional likelihoods of the input and remainder using deep generative models. The seasonal ratio score is computed from these estimates. Third, a threshold interval is identified from the in-distribution data to detect OOD examples. Experiments on diverse real-world benchmarks demonstrate that the SRS method is well-suited for time-series OOD detection when compared to baseline methods. Open-source code for SRS method is provided at //github.com/tahabelkhouja/SRS
Neural additive models (NAMs) can improve the interpretability of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we enhance them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) enabling a ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose \textit{DPM-Solver-v3}, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call \textit{empirical model statistics}. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5$\sim$10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%$\sim$30\% compared to previous state-of-the-art training-free methods. Code is available at \url{//github.com/thu-ml/DPM-Solver-v3}.
The concern about underlying discrimination hidden in machine learning (ML) models is increasing, as ML systems have been widely applied in more and more real-world scenarios and any discrimination hidden in them will directly affect human life. Many techniques have been developed to enhance fairness including commonly-used group fairness measures and several fairness-aware methods combining ensemble learning. However, existing fairness measures can only focus on one aspect -- either group or individual fairness, and the hard compatibility among them indicates a possibility of remaining biases even if one of them is satisfied. Moreover, existing mechanisms to boost fairness usually present empirical results to show validity, yet few of them discuss whether fairness can be boosted with certain theoretical guarantees. To address these issues, we propose a fairness quality measure named discriminative risk to reflect both individual and group fairness aspects. Furthermore, we investigate the properties of the proposed measure and propose first- and second-order oracle bounds to show that fairness can be boosted via ensemble combination with theoretical learning guarantees. The analysis is suitable for both binary and multi-class classification. A pruning method is also proposed to utilise our proposed measure and comprehensive experiments are conducted to evaluate the effectiveness of the proposed methods.
Deep-learning models have been successful in biomedical image segmentation. To generalize for real-world deployment, test-time augmentation (TTA) methods are often used to transform the test image into different versions that are hopefully closer to the training domain. Unfortunately, due to the vast diversity of instance scale and image styles, many augmented test images produce undesirable results, thus lowering the overall performance. This work proposes a new TTA framework, S$^3$-TTA, which selects the suitable image scale and style for each test image based on a transformation consistency metric. In addition, S$^3$-TTA constructs an end-to-end augmentation-segmentation joint-training pipeline to ensure a task-oriented augmentation. On public benchmarks for cell and lung segmentation, S$^3$-TTA demonstrates improvements over the prior art by 3.4% and 1.3%, respectively, by simply augmenting the input data in testing phase.
In reliable decision-making systems based on machine learning, models have to be robust to distributional shifts or provide the uncertainty of their predictions. In node-level problems of graph learning, distributional shifts can be especially complex since the samples are interdependent. To evaluate the performance of graph models, it is important to test them on diverse and meaningful distributional shifts. However, most graph benchmarks considering distributional shifts for node-level problems focus mainly on node features, while structural properties are also essential for graph problems. In this work, we propose a general approach for inducing diverse distributional shifts based on graph structure. We use this approach to create data splits according to several structural node properties: popularity, locality, and density. In our experiments, we thoroughly evaluate the proposed distributional shifts and show that they can be quite challenging for existing graph models. We also reveal that simple models often outperform more sophisticated methods on the considered structural shifts. Finally, our experiments provide evidence that there is a trade-off between the quality of learned representations for the base classification task under structural distributional shift and the ability to separate the nodes from different distributions using these representations.
Visual model-based RL methods typically encode image observations into low-dimensional representations in a manner that does not eliminate redundant information. This leaves them susceptible to spurious variations -- changes in task-irrelevant components such as background distractors or lighting conditions. In this paper, we propose a visual model-based RL method that learns a latent representation resilient to such spurious variations. Our training objective encourages the representation to be maximally predictive of dynamics and reward, while constraining the information flow from the observation to the latent representation. We demonstrate that this objective significantly bolsters the resilience of visual model-based RL methods to visual distractors, allowing them to operate in dynamic environments. We then show that while the learned encoder is resilient to spirious variations, it is not invariant under significant distribution shift. To address this, we propose a simple reward-free alignment procedure that enables test time adaptation of the encoder. This allows for quick adaptation to widely differing environments without having to relearn the dynamics and policy. Our effort is a step towards making model-based RL a practical and useful tool for dynamic, diverse domains. We show its effectiveness in simulation benchmarks with significant spurious variations as well as a real-world egocentric navigation task with noisy TVs in the background. Videos and code at //zchuning.github.io/repo-website/.
Large language models (LLMs), such as ChatGPT, have simplified text generation tasks, yet their inherent privacy risks are increasingly garnering attention. Existing solutions for privacy-preserving inference face significant challenges in practical deployment and implementation. In this paper, we propose PrivInfer, the first practical framework for privacy-preserving inference. It comprises two modules specifically designed for black-box LLMs in text generation. The perturbation module, employing differential privacy, generates perturbed prompts, thus enabling privacy-preserving inference with black-box LLMs. The restoration module extracts coherent and meaningful responses from obtained perturbed results, thus ensuring the accomplishment of the text generation tasks. Additionally, to enhance privacy and utility further, we develop RANTEXT, a novel differential privacy mechanism integrated into the perturbation module of PrivInfer. This mechanism is specifically tailored for LLMs and utilizes random adjacency in text perturbations. Experimental results indicate that PrivInfer is comparable to GPT-4 in text generation quality, and RANTEXT outperforms the current leading scheme in privacy protection, even under its adaptive attack, our proposed GPT inference attack.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.