亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Principle of Insufficient Reason (PIR) assigns equal probabilities to each alternative of a random experiment whenever there is no reason to prefer one over the other. The Maximum Entropy Principle (MaxEnt) generalizes PIR to the case where statistical information like expectations are given. It is known that both principles result in paradoxical probability updates for joint distributions of cause and effect. This is because constraints on the conditional P(effect|cause) result in changes of P(cause) that assign higher probability to those values of the cause that offer more options for the effect, suggesting "intentional behaviour". Earlier work therefore suggested sequentially maximizing (conditional) entropy according to the causal order, but without further justification apart from plausibility on toy examples. We justify causal modifications of PIR and MaxEnt by separating constraints into restrictions for the cause and restrictions for the mechanism that generates the effect from the cause. We further sketch why Causal PIR also entails "Information Geometric Causal Inference". We briefly discuss problems of generalizing the causal version of MaxEnt to arbitrary causal DAGs.

相關內容

迄今(jin)為止,產品(pin)設計師最友(you)好的交互動畫軟件。

Many causal inference approaches have focused on identifying an individual's outcome change due to a potential treatment, or the individual treatment effect (ITE), from observational studies. Rather than only estimating the ITE, we propose Collaborating Causal Networks (CCN) to estimate the full potential outcome distributions. This modification facilitates estimating the utility of each treatment and allows for individual variation in utility functions (e.g., variability in risk tolerance). We show that CCN learns distributions that asymptotically capture the correct potential outcome distributions under standard causal inference assumptions. Furthermore, we develop a new adjustment approach that is empirically effective in alleviating sample imbalance between treatment groups in observational studies. We evaluate CCN by extensive empirical experiments and demonstrate improved distribution estimates compared to existing Bayesian and Generative Adversarial Network-based methods. Additionally, CCN empirically improves decisions over a variety of utility functions.

We introduce a numerical technique for controlling the location and stability properties of Hopf bifurcations in dynamical systems. The algorithm consists of solving an optimization problem constrained by an extended system of nonlinear partial differential equations that characterizes Hopf bifurcation points. The flexibility and robustness of the method allows us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency with respect to a parameter of the system or the shape of the domain on which solutions are defined. Numerical applications are presented in systems arising from biology and fluid dynamics, such as the FitzHugh-Nagumo model, Ginzburg-Landau equation, Rayleigh-B\'enard convection problem, and Navier-Stokes equations, where the control of the location and oscillation frequency of periodic solutions is of high interest.

Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.

Subclassification and matching are often used in empirical studies to adjust for observed covariates; however, they are largely restricted to relatively simple study designs with a binary treatment and less developed for designs with a continuous exposure. Matching with exposure doses is particularly useful in instrumental variable designs and in understanding the dose-response relationships. In this article, we propose two criteria for optimal subclassification based on subclass homogeneity in the context of having a continuous exposure dose, and propose an efficient polynomial-time algorithm that is guaranteed to find an optimal subclassification with respect to one criterion and serves as a 2-approximation algorithm for the other criterion. We discuss how to incorporate dose and use appropriate penalties to control the number of subclasses in the design. Via extensive simulations, we systematically compare our proposed design to optimal non-bipartite pair matching, and demonstrate that combining our proposed subclassification scheme with regression adjustment helps reduce model dependence for parametric causal inference with a continuous dose. We apply the new design and associated randomization-based inferential procedure to study the effect of transesophageal echocardiography (TEE) monitoring during coronary artery bypass graft (CABG) surgery on patients' post-surgery clinical outcomes using Medicare and Medicaid claims data, and find evidence that TEE monitoring lowers patients' all-cause $30$-day mortality rate.

High levels of missing data and strong class imbalance are ubiquitous challenges that are often presented simultaneously in real-world time series data. Existing methods approach these problems separately, frequently making significant assumptions about the underlying data generation process in order to lessen the impact of missing information. In this work, we instead demonstrate how a general self-supervised training method, namely Autoregressive Predictive Coding (APC), can be leveraged to overcome both missing data and class imbalance simultaneously without strong assumptions. Specifically, on a synthetic dataset, we show that standard baselines are substantially improved upon through the use of APC, yielding the greatest gains in the combined setting of high missingness and severe class imbalance. We further apply APC on two real-world medical time-series datasets, and show that APC improves the classification performance in all settings, ultimately achieving state-of-the-art AUPRC results on the Physionet benchmark.

In structured prediction, the goal is to jointly predict many output variables that together encode a structured object -- a path in a graph, an entity-relation triple, or an ordering of objects. Such a large output space makes learning hard and requires vast amounts of labeled data. Different approaches leverage alternate sources of supervision. One approach -- entropy regularization -- posits that decision boundaries should lie in low-probability regions. It extracts supervision from unlabeled examples, but remains agnostic to the structure of the output space. Conversely, neuro-symbolic approaches exploit the knowledge that not every prediction corresponds to a valid structure in the output space. Yet, they does not further restrict the learned output distribution. This paper introduces a framework that unifies both approaches. We propose a loss, neuro-symbolic entropy regularization, that encourages the model to confidently predict a valid object. It is obtained by restricting entropy regularization to the distribution over only valid structures. This loss is efficiently computed when the output constraint is expressed as a tractable logic circuit. Moreover, it seamlessly integrates with other neuro-symbolic losses that eliminate invalid predictions. We demonstrate the efficacy of our approach on a series of semi-supervised and fully-supervised structured-prediction experiments, where we find that it leads to models whose predictions are more accurate and more likely to be valid.

Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.

We study few-shot supervised domain adaptation (DA) for regression problems, where only a few labeled target domain data and many labeled source domain data are available. Many of the current DA methods base their transfer assumptions on either parametrized distribution shift or apparent distribution similarities, e.g., identical conditionals or small distributional discrepancies. However, these assumptions may preclude the possibility of adaptation from intricately shifted and apparently very different distributions. To overcome this problem, we propose mechanism transfer, a meta-distributional scenario in which a data generating mechanism is invariant among domains. This transfer assumption can accommodate nonparametric shifts resulting in apparently different distributions while providing a solid statistical basis for DA. We take the structural equations in causal modeling as an example and propose a novel DA method, which is shown to be useful both theoretically and experimentally. Our method can be seen as the first attempt to fully leverage the structural causal models for DA.

Machine Learning models become increasingly proficient in complex tasks. However, even for experts in the field, it can be difficult to understand what the model learned. This hampers trust and acceptance, and it obstructs the possibility to correct the model. There is therefore a need for transparency of machine learning models. The development of transparent classification models has received much attention, but there are few developments for achieving transparent Reinforcement Learning (RL) models. In this study we propose a method that enables a RL agent to explain its behavior in terms of the expected consequences of state transitions and outcomes. First, we define a translation of states and actions to a description that is easier to understand for human users. Second, we developed a procedure that enables the agent to obtain the consequences of a single action, as well as its entire policy. The method calculates contrasts between the consequences of a policy derived from a user query, and of the learned policy of the agent. Third, a format for generating explanations was constructed. A pilot survey study was conducted to explore preferences of users for different explanation properties. Results indicate that human users tend to favor explanations about policy rather than about single actions.

While Generative Adversarial Networks (GANs) have empirically produced impressive results on learning complex real-world distributions, recent work has shown that they suffer from lack of diversity or mode collapse. The theoretical work of Arora et al.~\cite{AroraGeLiMaZh17} suggests a dilemma about GANs' statistical properties: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. In contrast, we show in this paper that GANs can in principle learn distributions in Wasserstein distance (or KL-divergence in many cases) with polynomial sample complexity, if the discriminator class has strong distinguishing power against the particular generator class (instead of against all possible generators). For various generator classes such as mixture of Gaussians, exponential families, and invertible neural networks generators, we design corresponding discriminators (which are often neural nets of specific architectures) such that the Integral Probability Metric (IPM) induced by the discriminators can provably approximate the Wasserstein distance and/or KL-divergence. This implies that if the training is successful, then the learned distribution is close to the true distribution in Wasserstein distance or KL divergence, and thus cannot drop modes. Our preliminary experiments show that on synthetic datasets the test IPM is well correlated with KL divergence, indicating that the lack of diversity may be caused by the sub-optimality in optimization instead of statistical inefficiency.

北京阿比特科技有限公司