Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate beyond the observed covariate space. Current outcome regression-based alternatives can extrapolate but target a conditional treatment effect that is incompatible in the indirect comparison. When adjusting for covariates, one must integrate or average the conditional estimate over the relevant population to recover a compatible marginal treatment effect. We propose a marginalization method based parametric G-computation that can be easily applied where the outcome regression is a generalized linear model or a Cox model. The approach views the covariate adjustment regression as a nuisance model and separates its estimation from the evaluation of the marginal treatment effect of interest. The method can accommodate a Bayesian statistical framework, which naturally integrates the analysis into a probabilistic framework. A simulation study provides proof-of-principle and benchmarks the method's performance against MAIC and the conventional outcome regression. Parametric G-computation achieves more precise and more accurate estimates than MAIC, particularly when covariate overlap is poor, and yields unbiased marginal treatment effect estimates under no failures of assumptions. Furthermore, the marginalized covariate-adjusted estimates provide greater precision and accuracy than the conditional estimates produced by the conventional outcome regression, which are systematically biased because the measure of effect is non-collapsible.
In this paper, a Parallel Direct Eigensolver for Sequences of Hermitian Eigenvalue Problems with no tridiagonalization is proposed, denoted by \texttt{PDESHEP}, and it combines direct methods with iterative methods. \texttt{PDESHEP} first reduces a Hermitian matrix to its banded form, then applies a spectrum slicing algorithm to the banded matrix, and finally computes the eigenvectors of the original matrix via backtransform. Therefore, compared with conventional direct eigensolvers, \texttt{PDESHEP} avoids tridiagonalization, which consists of many memory-bounded operations. In this work, the iterative method in \texttt{PDESHEP} is based on the contour integral method implemented in FEAST. The combination of direct methods with iterative methods for banded matrices requires some efficient data redistribution algorithms both from 2D to 1D and from 1D to 2D data structures. Hence, some two-step data redistribution algorithms are proposed, which can be $10\times$ faster than ScaLAPACK routine \texttt{PXGEMR2D}. For the symmetric self-consistent field (SCF) eigenvalue problems, \texttt{PDESHEP} can be on average $1.25\times$ faster than the state-of-the-art direct solver in ELPA when using $4096$ processes. Numerical results are obtained for dense Hermitian matrices from real applications and large real sparse matrices from the SuiteSparse collection.
This study concerns probability distribution estimation of sample maximum. The traditional approach is the parametric fitting to the limiting distribution - the generalized extreme value distribution; however, the model in finite cases is misspecified to a certain extent. We propose a plug-in type of the kernel distribution estimator which does not need model specification. It is proved that both asymptotic convergence rates depend on the tail index and the second order parameter. As the tail gets light, the degree of misspecification of the parametric fitting becomes large, that means the convergence rate becomes slow. In the Weibull cases, which can be seen as the limit of tail-lightness, only the nonparametric distribution estimator keeps its consistency. Finally, we report results of numerical experiments and two real case studies.
This work studies an experimental design problem where $x$'s are to be selected with the goal of estimating a function $m(x)$, which is observed with noise. A linear model is fitted to $m(x)$ but it is not assumed that the model is correctly specified. It follows that the quantity of interest is the best linear approximation of $m(x)$, which is denoted by $\ell(x)$. It is shown that in this framework the ordinary least squares estimator typically leads to an inconsistent estimation of $\ell(x)$, and rather weighted least squares should be considered. An asymptotic minimax criterion is formulated for this estimator, and a design that minimizes the criterion is constructed. An important feature of this problem is that the $x$'s should be random, rather than fixed. Otherwise, the minimax risk is infinite. It is shown that the optimal random minimax design is different from its deterministic counterpart, which was studied previously, and a simulation study indicates that it generally performs better when $m(x)$ is a quadratic or a cubic function. Another finding is that when the variance of the noise goes to infinity, the random and deterministic minimax designs coincide. The results are illustrated for polynomial regression models and different generalizations are presented.
Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the capability of identifying relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We present simulations demonstrating that our approaches exhibit improved performance in terms of the ability to recover all the relevant predictors in a variety of data settings, compared to existing BART-based variable selection methods.
An N-of-1 trial is a multi-period crossover trial performed in a single individual, with a primary goal to estimate treatment effect on the individual instead of population-level mean responses. As in a conventional crossover trial, it is critical to understand carryover effects of the treatment in an N-of-1 trial, especially when no washout periods between treatment periods are instituted to reduce trial duration. To deal with this issue in situations where high volume of measurements is made during the study, we introduce a novel Bayesian distributed lag model that facilitates the estimation of carryover effects, while accounting for temporal correlations using an autoregressive model. Specifically, we propose a prior variance-covariance structure on the lag coefficients to address collinearity caused by the fact that treatment exposures are typically identical on successive days. A connection between the proposed Bayesian model and penalized regression is noted. Simulation results demonstrate that the proposed model substantially reduces the root mean squared error in the estimation of carryover effects and immediate effects when compared to other existing methods, while being comparable in the estimation of the total effects. We also apply the proposed method to assess the extent of carryover effects of light therapies in relieving depressive symptoms in cancer survivors.
Given the noisy pairwise measurements among a set of unknown group elements, how to recover them efficiently and robustly? This problem, known as group synchronization, has drawn tremendous attention in the scientific community. In this work, we focus on orthogonal group synchronization that has found many applications, including computer vision, robotics, and cryo-electron microscopy. One commonly used approach is the least squares estimation that requires solving a highly nonconvex optimization program. The past few years have witnessed considerable advances in tackling this challenging problem by convex relaxation and efficient first-order methods. However, one fundamental theoretical question remains to be answered: how does the recovery performance depend on the noise strength? To answer this question, we study a benchmark model: recovering orthogonal group elements from their pairwise measurements corrupted by Gaussian noise. We investigate the performance of convex relaxation and the generalized power method (GPM). By applying the novel~\emph{leave-one-out} technique, we prove that the GPM with spectral initialization enjoys linear convergence to the global optima to the convex relaxation that also matches the maximum likelihood estimator. Our result achieves a near-optimal performance bound on the convergence of the GPM and improves the state-of-the-art theoretical guarantees on the tightness of convex relaxation by a large margin.
For supervised classification problems, this paper considers estimating the query's label probability through local regression using observed covariates. Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN) estimator, which take label average over a ball around the query, are consistent but asymptotically biased particularly for a large radius of the ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and extrapolate it to the query itself. However, their theoretical optimality has been shown for the limit of the infinite number of training samples. For correcting the asymptotic bias with fewer observations, this paper proposes a local radial regression (LRR) and its logistic regression variant called local radial logistic regression (LRLR), by combining the advantages of LPoR and MS-$k$-NN. The idea is simple: we fit the local regression to observed labels by taking the radial distance as the explanatory variable and then extrapolate the estimated label probability to zero distance. Our numerical experiments, including real-world datasets of daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
In this work, we compare three different modeling approaches for the scores of soccer matches with regard to their predictive performances based on all matches from the four previous FIFA World Cups 2002 - 2014: Poisson regression models, random forests and ranking methods. While the former two are based on the teams' covariate information, the latter method estimates adequate ability parameters that reflect the current strength of the teams best. Within this comparison the best-performing prediction methods on the training data turn out to be the ranking methods and the random forests. However, we show that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate we can improve the predictive power substantially. Finally, this combination of methods is chosen as the final model and based on its estimates, the FIFA World Cup 2018 is simulated repeatedly and winning probabilities are obtained for all teams. The model slightly favors Spain before the defending champion Germany. Additionally, we provide survival probabilities for all teams and at all tournament stages as well as the most probable tournament outcome.
We propose an Active Learning approach to image segmentation that exploits geometric priors to streamline the annotation process. We demonstrate this for both background-foreground and multi-class segmentation tasks in 2D images and 3D image volumes. Our approach combines geometric smoothness priors in the image space with more traditional uncertainty measures to estimate which pixels or voxels are most in need of annotation. For multi-class settings, we additionally introduce two novel criteria for uncertainty. In the 3D case, we use the resulting uncertainty measure to show the annotator voxels lying on the same planar patch, which makes batch annotation much easier than if they were randomly distributed in the volume. The planar patch is found using a branch-and-bound algorithm that finds a patch with the most informative instances. We evaluate our approach on Electron Microscopy and Magnetic Resonance image volumes, as well as on regular images of horses and faces. We demonstrate a substantial performance increase over state-of-the-art approaches.