Evaluation plays a critical role in deep learning as a fundamental block of any prediction-based system. However, the vast number of Natural Language Processing (NLP) tasks and the development of various metrics have led to challenges in evaluating different systems with different metrics. To address these challenges, we introduce jury, a toolkit that provides a unified evaluation framework with standardized structures for performing evaluation across different tasks and metrics. The objective of jury is to standardize and improve metric evaluation for all systems and aid the community in overcoming the challenges in evaluation. Since its open-source release, jury has reached a wide audience and is available at //github.com/obss/jury.
Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at //motion-lab.github.io/AdaptNet.
We present a new general learning approach, Prompt Learning for Action Recognition (PLAR), which leverages the strengths of prompt learning to guide the learning process. Our approach is designed to predict the action label by helping the models focus on the descriptions or instructions associated with actions in the input videos. Our formulation uses various prompts, including learnable prompts, auxiliary visual information, and large vision models to improve the recognition performance. In particular, we design a learnable prompt method that learns to dynamically generate prompts from a pool of prompt experts under different inputs. By sharing the same objective with the task, our proposed PLAR can optimize prompts that guide the model's predictions while explicitly learning input-invariant (prompt experts pool) and input-specific (data-dependent) prompt knowledge. We evaluate our approach on datasets consisting of both ground camera videos and aerial videos, and scenes with single-agent and multi-agent actions. In practice, we observe a 3.17-10.2% accuracy improvement on the aerial multi-agent dataset Okutamam and a 1.0-3.6% improvement on the ground camera single-agent dataset Something Something V2. We plan to release our code on the WWW.
Vision transformers (ViTs) have recently been used for visual matching beyond object detection and segmentation. However, the original grid dividing strategy of ViTs neglects the spatial information of the keypoints, limiting the sensitivity to local information. Therefore, we propose \textbf{QueryTrans} (Query Transformer), which adopts a cross-attention module and keypoints-based center crop strategy for better spatial information extraction. We further integrate the graph attention module and devise a transformer-based graph matching approach \textbf{GMTR} (Graph Matching TRansformers) whereby the combinatorial nature of GM is addressed by a graph transformer neural GM solver. On standard GM benchmarks, GMTR shows competitive performance against the SOTA frameworks. Specifically, on Pascal VOC, GMTR achieves $\mathbf{83.6\%}$ accuracy, $\mathbf{0.9\%}$ higher than the SOTA framework. On Spair-71k, GMTR shows great potential and outperforms most of the previous works. Meanwhile, on Pascal VOC, QueryTrans improves the accuracy of NGMv2 from $80.1\%$ to $\mathbf{83.3\%}$, and BBGM from $79.0\%$ to $\mathbf{84.5\%}$. On Spair-71k, QueryTrans improves NGMv2 from $80.6\%$ to $\mathbf{82.5\%}$, and BBGM from $82.1\%$ to $\mathbf{83.9\%}$. Source code will be made publicly available.
Finding corresponding pixels within a pair of images is a fundamental computer vision task with various applications. Due to the specific requirements of different tasks like optical flow estimation and local feature matching, previous works are primarily categorized into dense matching and sparse feature matching focusing on specialized architectures along with task-specific datasets, which may somewhat hinder the generalization performance of specialized models. In this paper, we propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching). In particular, we elaborately design a cascaded GRU module for refinement by exploring the geometric similarity iteratively at multiple scales following an additional uncertainty estimation module for sparsification. To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth by generating optical flow supervision with greater intervals. As such, we are able to mix up various dense and sparse matching datasets, significantly improving the training diversity. The generalization capacity of our proposed RGM is greatly improved by learning the matching and uncertainty estimation in a two-stage manner on the large, mixed data. Superior performance is achieved for zero-shot matching and downstream geometry estimation across multiple datasets, outperforming the previous methods by a large margin.
Graph neural networks (GNNs) are a type of deep learning models that learning over graphs, and have been successfully applied in many domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques from graph processing to distributed execution. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol.We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on scalable GNNs.
Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter reviews the recent advances in deep reinforcement learning with a focus on the most used deep architectures such as autoencoders, convolutional neural networks and recurrent neural networks which have successfully been come together with the reinforcement learning framework.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.