Instruction finetuning on a variety of image-text instruction data is the key to obtaining a versatile Multimodal Large Language Model (MLLM), and different configurations of the instruction data can lead to finetuned models with different capabilities. However, we have discovered that data conflicts are inevitable when mixing instruction data from distinct domains, which can result in performance drops for tasks of a specific domain. To address this issue, we propose to apply an efficient Mixture of Experts (MoE) design, which is a sparse Mixture of LoRA Experts (MoLE) for instruction finetuning MLLMs. Within the Transformer layers, we extend the popular Low-Rank Adaption (LoRA) method by creating a set of LoRA experts specifically for the MLP layer, and route each token to the top-1 expert based on a routing function, allowing adaptive choices for tokens from different domains. Since the LoRA experts are sparsely activated, the training and inference cost are kept roughly constant compared to the original LoRA method. By replacing the plain-LoRA of LLaVA-1.5 with our MoE design, our final model is named LLaVA-MoLE. Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines. Most importantly, on the mixed datasets, LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
Tangible interfaces in mixed reality (MR) environments allow for intuitive data interactions. Tangible cubes, with their rich interaction affordances, high maneuverability, and stable structure, are particularly well-suited for exploring multi-dimensional data types. However, the design potential of these cubes is underexplored. This study introduces a design space for tangible cubes in MR, focusing on interaction space, visualization space, sizes, and multiplicity. Using spatio-temporal data, we explored the interaction affordances of these cubes in a workshop (N=24). We identified unique interactions like rotating, tapping, and stacking, which are linked to augmented reality (AR) visualization commands. Integrating user-identified interactions, we created a design space for tangible-cube interactions and visualization. A prototype visualizing global health spending with small cubes was developed and evaluated, supporting both individual and combined cube manipulation. This research enhances our grasp of tangible interaction in MR, offering insights for future design and application in diverse data contexts.
High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.
UNet and its variants have been widely used in medical image segmentation. However, these models, especially those based on Transformer architectures, pose challenges due to their large number of parameters and computational loads, making them unsuitable for mobile health applications. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as competitive alternatives to CNN and Transformer architectures. Building upon this, we employ Mamba as a lightweight substitute for CNN and Transformer within UNet, aiming at tackling challenges stemming from computational resource limitations in real medical settings. To this end, we introduce the Lightweight Mamba UNet (LightM-UNet) that integrates Mamba and UNet in a lightweight framework. Specifically, LightM-UNet leverages the Residual Vision Mamba Layer in a pure Mamba fashion to extract deep semantic features and model long-range spatial dependencies, with linear computational complexity. Extensive experiments conducted on two real-world 2D/3D datasets demonstrate that LightM-UNet surpasses existing state-of-the-art literature. Notably, when compared to the renowned nnU-Net, LightM-UNet achieves superior segmentation performance while drastically reducing parameter and computation costs by 116x and 21x, respectively. This highlights the potential of Mamba in facilitating model lightweighting. Our code implementation is publicly available at //github.com/MrBlankness/LightM-UNet.
We present Polish Information Retrieval Benchmark (PIRB), a comprehensive evaluation framework encompassing 41 text information retrieval tasks for Polish. The benchmark incorporates existing datasets as well as 10 new, previously unpublished datasets covering diverse topics such as medicine, law, business, physics, and linguistics. We conduct an extensive evaluation of over 20 dense and sparse retrieval models, including the baseline models trained by us as well as other available Polish and multilingual methods. Finally, we introduce a three-step process for training highly effective language-specific retrievers, consisting of knowledge distillation, supervised fine-tuning, and building sparse-dense hybrid retrievers using a lightweight rescoring model. In order to validate our approach, we train new text encoders for Polish and compare their results with previously evaluated methods. Our dense models outperform the best solutions available to date, and the use of hybrid methods further improves their performance.
Quantum Annealing (QA)-accelerated MIMO detection is an emerging research approach in the context of NextG wireless networks. The opportunity is to enable large MIMO systems and thus improve wireless performance. The approach aims to leverage QA to expedite the computation required for theoretically optimal but computationally-demanding Maximum Likelihood detection to overcome the limitations of the currently deployed linear detectors. This paper presents X-ResQ, a QA-based MIMO detector system featuring fine-grained quantum task parallelism that is uniquely enabled by the Reverse Annealing (RA) protocol. Unlike prior designs, X-ResQ has many desirable system properties for a parallel QA detector and has effectively improved detection performance as more qubits are assigned. In our evaluations on a state-of-the-art quantum annealer, fully parallel X-ResQ achieves near-optimal throughput (over 10 bits/s/Hz) for $4\times6$ MIMO with 16-QAM using six levels of parallelism with 240 qubits and $220~\mu$s QA compute time, achieving 2.5--5$\times$ gains compared against other tested detectors. For more comprehensive evaluations, we implement and evaluate X-ResQ in the non-quantum digital setting. This non-quantum X-ResQ demonstration showcases the potential to realize ultra-large $1024\times1024$ MIMO, significantly outperforming other MIMO detectors, including the state-of-the-art RA detector classically implemented in the same way.
Monocular SLAM has received a lot of attention due to its simple RGB inputs and the lifting of complex sensor constraints. However, existing monocular SLAM systems are designed for bounded scenes, restricting the applicability of SLAM systems. To address this limitation, we propose MoD-SLAM, the first monocular NeRF-based dense mapping method that allows 3D reconstruction in real-time in unbounded scenes. Specifically, we introduce a Gaussian-based unbounded scene representation approach to solve the challenge of mapping scenes without boundaries. This strategy is essential to extend the SLAM application. Moreover, a depth estimation module in the front-end is designed to extract accurate priori depth values to supervise mapping and tracking processes. By introducing a robust depth loss term into the tracking process, our SLAM system achieves more precise pose estimation in large-scale scenes. Our experiments on two standard datasets show that MoD-SLAM achieves competitive performance, improving the accuracy of the 3D reconstruction and localization by up to 30% and 15% respectively compared with existing state-of-the-art monocular SLAM systems.
Vehicle detection in Unmanned Aerial Vehicle (UAV) captured images has wide applications in aerial photography and remote sensing. There are many public benchmark datasets proposed for the vehicle detection and tracking in UAV images. Recent studies show that adding an adversarial patch on objects can fool the well-trained deep neural networks based object detectors, posing security concerns to the downstream tasks. However, the current public UAV datasets might ignore the diverse altitudes, vehicle attributes, fine-grained instance-level annotation in mostly side view with blurred vehicle roof, so none of them is good to study the adversarial patch based vehicle detection attack problem. In this paper, we propose a new dataset named EVD4UAV as an altitude-sensitive benchmark to evade vehicle detection in UAV with 6,284 images and 90,886 fine-grained annotated vehicles. The EVD4UAV dataset has diverse altitudes (50m, 70m, 90m), vehicle attributes (color, type), fine-grained annotation (horizontal and rotated bounding boxes, instance-level mask) in top view with clear vehicle roof. One white-box and two black-box patch based attack methods are implemented to attack three classic deep neural networks based object detectors on EVD4UAV. The experimental results show that these representative attack methods could not achieve the robust altitude-insensitive attack performance.
Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
We present DiffChat, a novel method to align Large Language Models (LLMs) to "chat" with prompt-as-input Text-to-Image Synthesis (TIS) models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat. Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference, and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.
Cloud native technologies have been observed to expand into the realm of Internet of Things (IoT) and Cyber-physical Systems, of which an important application domain is robotics. In this paper, we review the cloudification practice in the robotics domain from both literature and industrial perspectives. We propose RoboKube, an adaptive framework that is based on the Kubernetes (K8s) ecosystem to set up a common platform across the device-cloud continuum for the deployment of cloudified Robotic Operating System (ROS) powered applications, to facilitate the cloud native evolution in robotics. We examine the process of modernizing ROS applications using cloud-native technologies, focusing on both the platform and application perspectives. In addition, we address the challenges of networking setups for heterogeneous environments. This paper intends to serves as a guide for developers and researchers, offering insights into containerization strategies, ROS node distribution and clustering, and deployment options. To demonstrate the feasibility of our approach, we present a case study involving the cloudification of a teleoperation testbed.