Machine learning algorithms dedicated to financial time series forecasting have gained a lot of interest. But choosing between several algorithms can be challenging, as their estimation accuracy may be unstable over time. Online aggregation of experts combine the forecasts of a finite set of models in a single approach without making any assumption about the models. In this paper, a Bernstein Online Aggregation (BOA) procedure is applied to the construction of long-short strategies built from individual stock return forecasts coming from different machine learning models. The online mixture of experts leads to attractive portfolio performances even in environments characterised by non-stationarity. The aggregation outperforms individual algorithms, offering a higher portfolio Sharpe Ratio, lower shortfall, with a similar turnover. Extensions to expert and aggregation specialisations are also proposed to improve the overall mixture on a family of portfolio evaluation metrics.
Stochastic variational inference algorithms are derived for fitting various heteroskedastic time series models. We examine Gaussian, t, and skew-t response GARCH models and fit these using Gaussian variational approximating densities. We implement efficient stochastic gradient ascent procedures based on the use of control variates or the reparameterization trick and demonstrate that the proposed implementations provide a fast and accurate alternative to Markov chain Monte Carlo sampling. Additionally, we present sequential updating versions of our variational algorithms, which are suitable for efficient portfolio construction and dynamic asset allocation.
Generating samples given a specific label requires estimating conditional distributions. We derive a tractable upper bound of the Wasserstein distance between conditional distributions to lay the theoretical groundwork to learn conditional distributions. Based on this result, we propose a novel conditional generation algorithm where conditional distributions are fully characterized by a metric space defined by a statistical distance. We employ optimal transport theory to propose the Wasserstein geodesic generator, a new conditional generator that learns the Wasserstein geodesic. The proposed method learns both conditional distributions for observed domains and optimal transport maps between them. The conditional distributions given unobserved intermediate domains are on the Wasserstein geodesic between conditional distributions given two observed domain labels. Experiments on face images with light conditions as domain labels demonstrate the efficacy of the proposed method.
Machine learning algorithms have shown remarkable performance in diverse applications. However, it is still challenging to guarantee performance in distribution shifts when distributions of training and test datasets are different. There have been several approaches to improve the performance in distribution shift cases by learning invariant features across groups or domains. However, we observe that the previous works only learn invariant features partially. While the prior works focus on the limited invariant features, we first raise the importance of the sufficient invariant features. Since only training sets are given empirically, the learned partial invariant features from training sets might not be present in the test sets under distribution shift. Therefore, the performance improvement on distribution shifts might be limited. In this paper, we argue that learning sufficient invariant features from the training set is crucial for the distribution shift case. Concretely, we newly observe the connection between a) sufficient invariant features and b) flatness differences between groups or domains. Moreover, we propose a new algorithm, Adaptive Sharpness-aware Group Distributionally Robust Optimization (ASGDRO), to learn sufficient invariant features across domains or groups. ASGDRO learns sufficient invariant features by seeking common flat minima across all groups or domains. Therefore, ASGDRO improves the performance on diverse distribution shift cases. Besides, we provide a new simple dataset, Heterogeneous-CMNIST, to diagnose whether the various algorithms learn sufficient invariant features.
Increasing amounts of structured data can provide value for research and business if the relevant data can be located. Often the data is in a data lake without a consistent schema, making locating useful data challenging. Table search is a growing research area, but existing benchmarks have been limited to displayed tables. Tables sized and formatted for display in a Wikipedia page or ArXiv paper are considerably different from data tables in both scale and style. By using metadata associated with open data from government portals, we create the first dataset to benchmark search over data tables at scale. We demonstrate three styles of table-to-table related table search. The three notions of table relatedness are: tables produced by the same organization, tables distributed as part of the same dataset, and tables with a high degree of overlap in the annotated tags. The keyword tags provided with the metadata also permit the automatic creation of a keyword search over tables benchmark. We provide baselines on this dataset using existing methods including traditional and neural approaches.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.