We present a new open-vocabulary detection framework. Our framework uses both image-level labels and detailed detection annotations when available. Our framework proceeds in three steps. We first train a language-conditioned object detector on fully-supervised detection data. This detector gets to see the presence or absence of ground truth classes during training, and conditions prediction on the set of present classes. We use this detector to pseudo-label images with image-level labels. Our detector provides much more accurate pseudo-labels than prior approaches with its conditioning mechanism. Finally, we train an unconditioned open-vocabulary detector on the pseudo-annotated images. The resulting detector, named DECOLA, shows strong zero-shot performance in open-vocabulary LVIS benchmark as well as direct zero-shot transfer benchmarks on LVIS, COCO, Object365, and OpenImages. DECOLA outperforms the prior arts by 17.1 AP-rare and 9.4 mAP on zero-shot LVIS benchmark. DECOLA achieves state-of-the-art results in various model sizes, architectures, and datasets by only training on open-sourced data and academic-scale computing. Code is available at //github.com/janghyuncho/DECOLA.
The HaliVer tool integrates deductive verification into the popular scheduling language Halide, used for image processing pipelines and array computations. HaliVer uses Vercors, a separation logic-based verifier, to verify the correctness of (1) the Halide algorithms and (2) the optimised parallel code produced by \halide when an optimisation schedule is applied to the algorithm. This allows proving complex, optimised code correct while reducing the effort to provide the required verification annotations. For both approaches, the same specification is used. We evaluated the tool on several optimised programs generated from characteristic Halide algorithms, using all but one of the essential scheduling directives available in Halide. Without annotation effort, Haliver proves memory safety in almost all programs. With annotations Haliver, additionally, proves functional correctness properties. We show that the approach is viable and reduces the manual annotation effort by an order of magnitude.
Recent advancements in large-scale pre-training of visual-language models on paired image-text data have demonstrated impressive generalization capabilities for zero-shot tasks. Building on this success, efforts have been made to adapt these image-based visual-language models, such as CLIP, for videos extending their zero-shot capabilities to the video domain. While these adaptations have shown promising results, they come at a significant computational cost and struggle with effectively modeling the crucial temporal aspects inherent to the video domain. In this study, we present EZ-CLIP, a simple and efficient adaptation of CLIP that addresses these challenges. EZ-CLIP leverages temporal visual prompting for seamless temporal adaptation, requiring no fundamental alterations to the core CLIP architecture while preserving its remarkable generalization abilities. Moreover, we introduce a novel learning objective that guides the temporal visual prompts to focus on capturing motion, thereby enhancing its learning capabilities from video data. We conducted extensive experiments on five different benchmark datasets, thoroughly evaluating EZ-CLIP for zero-shot learning and base-to-novel video action recognition, and also demonstrating its potential for few-shot generalization.Impressively, with a mere 5.2 million learnable parameters (as opposed to the 71.1 million in the prior best model), EZ-CLIP can be efficiently trained on a single GPU, outperforming existing approaches in several evaluations.
Cross-domain sequential recommendation (CDSR) shifts the modeling of user preferences from flat to stereoscopic by integrating and learning interaction information from multiple domains at different granularities (ranging from inter-sequence to intra-sequence and from single-domain to cross-domain). In this survey, we first define the CDSR problem using a four-dimensional tensor and then analyze its multi-type input representations under multidirectional dimensionality reductions. Following that, we provide a systematic overview from both macro and micro views. From a macro view, we abstract the multi-level fusion structures of various models across domains and discuss their bridges for fusion. From a micro view, focusing on the existing models, we specifically discuss the basic technologies and then explain the auxiliary learning technologies. Finally, we exhibit the available public datasets and the representative experimental results as well as provide some insights into future directions for research in CDSR.
Web search engines have long served as indispensable tools for information retrieval; user behavior and query formulation strategies have been well studied. The introduction of search engines powered by large language models (LLMs) suggested more conversational search and new types of query strategies. In this paper, we compare traditional and LLM-based search for the task of image geolocation, i.e., determining the location where an image was captured. Our work examines user interactions, with a particular focus on query formulation strategies. In our study, 60 participants were assigned either traditional or LLM-based search engines as assistants for geolocation. Participants using traditional search more accurately predicted the location of the image compared to those using the LLM-based search. Distinct strategies emerged between users depending on the type of assistant. Participants using the LLM-based search issued longer, more natural language queries, but had shorter search sessions. When reformulating their search queries, traditional search participants tended to add more terms to their initial queries, whereas participants using the LLM-based search consistently rephrased their initial queries.
DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.
We propose a new method for separating superimposed sources using diffusion-based generative models. Our method relies only on separately trained statistical priors of independent sources to establish a new objective function guided by maximum a posteriori estimation with an $\alpha$-posterior, across multiple levels of Gaussian smoothing. Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature and the recovery of encoded bits from a signal of interest, as measured by the bit error rate (BER). Experimental results with RF mixtures demonstrate that our method results in a BER reduction of 95% over classical and existing learning-based methods. Our analysis demonstrates that our proposed method yields solutions that asymptotically approach the modes of an underlying discrete distribution. Furthermore, our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme, shedding additional light on its use beyond conditional sampling. The project webpage is available at //alpha-rgs.github.io
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.