We propose a novel approach to the action segmentation task for long, untrimmed videos, based on solving an optimal transport problem. By encoding a temporal consistency prior into a Gromov-Wasserstein problem, we are able to decode a temporally consistent segmentation from a noisy affinity/matching cost matrix between video frames and action classes. Unlike previous approaches, our method does not require knowing the action order for a video to attain temporal consistency. Furthermore, our resulting (fused) Gromov-Wasserstein problem can be efficiently solved on GPUs using a few iterations of projected mirror descent. We demonstrate the effectiveness of our method in an unsupervised learning setting, where our method is used to generate pseudo-labels for self-training. We evaluate our segmentation approach and unsupervised learning pipeline on the Breakfast, 50-Salads, YouTube Instructions and Desktop Assembly datasets, yielding state-of-the-art results for the unsupervised video action segmentation task.
Time series anomaly detection (TSAD) plays a crucial role in various industries by identifying atypical patterns that deviate from standard trends, thereby maintaining system integrity and enabling prompt response measures. Traditional TSAD models, which often rely on deep learning, require extensive training data and operate as black boxes, lacking interpretability for detected anomalies. To address these challenges, we propose LLMAD, a novel TSAD method that employs Large Language Models (LLMs) to deliver accurate and interpretable TSAD results. LLMAD innovatively applies LLMs for in-context anomaly detection by retrieving both positive and negative similar time series segments, significantly enhancing LLMs' effectiveness. Furthermore, LLMAD employs the Anomaly Detection Chain-of-Thought (AnoCoT) approach to mimic expert logic for its decision-making process. This method further enhances its performance and enables LLMAD to provide explanations for their detections through versatile perspectives, which are particularly important for user decision-making. Experiments on three datasets indicate that our LLMAD achieves detection performance comparable to state-of-the-art deep learning methods while offering remarkable interpretability for detections. To the best of our knowledge, this is the first work that directly employs LLMs for TSAD.
Machine unlearning, a novel area within artificial intelligence, focuses on addressing the challenge of selectively forgetting or reducing undesirable knowledge or behaviors in machine learning models, particularly in the context of large language models (LLMs). This paper introduces a methodology to align LLMs, such as Open Pre-trained Transformer Language Models, with ethical, privacy, and safety standards by leveraging the gradient ascent algorithm for knowledge unlearning. Our approach aims to selectively erase or modify learned information in LLMs, targeting harmful responses and copyrighted content. This paper presents a dual-pronged approach to enhance the ethical and safe behavior of large language models (LLMs) by addressing the issues of harmful responses and copyrighted content. To mitigate harmful responses, we applied gradient ascent on the PKU dataset, achieving a 75\% reduction in harmful responses for Open Pre-trained Transformer Language Models (OPT1.3b and OPT2.7b) \citet{zhang2022opt} while retaining previous knowledge using the TruthfulQA dataset \citet{DBLP:journals/corr/abs-2109-07958}. For handling copyrighted content, we constructed a custom dataset based on the Lord of the Rings corpus and aligned LLMs (OPT1.3b and OPT2.7b) \citet{zhang2022opt} through LoRA: Low-Rank Adaptation of Large Language Models \citet{DBLP:journals/corr/abs-2106-09685} finetuning. Subsequently, we employed gradient ascent to unlearn the Lord of the Rings content, resulting in a remarkable reduction in the presence of copyrighted material. To maintain a diverse knowledge base, we utilized the Book Corpus dataset. Additionally, we propose a new evaluation technique for assessing the effectiveness of harmful unlearning.
In spiking neural networks, neuron dynamics are described by the biologically realistic integrate-and-fire model that captures membrane potential accumulation and above-threshold firing behaviors. Among the hardware implementations of integrate-and-fire neuron devices, one important feature, reset, has been largely ignored. Here, we present the design and fabrication of a magnetic domain wall and magnetic tunnel junction based artificial integrate-and-fire neuron device that achieves reliable reset at the end of the integrate-fire cycle. We demonstrate the domain propagation in the domain wall racetrack (integration), reading using a magnetic tunnel junction (fire), and reset as the domain is ejected from the racetrack, showing the artificial neuron can be operated continuously over 100 integrate-fire-reset cycles. Both pulse amplitude and pulse number encoding is demonstrated. The device data is applied on an image classification task using a spiking neural network and shown to have comparable performance to an ideal leaky, integrate-and-fire neural network. These results achieve the first demonstration of reliable integrate-fire-reset in domain wall-magnetic tunnel junction-based neuron devices and shows the promise of spintronics for neuromorphic computing.
Efficient computation of sensitivities is a promising approach for efficiently of designing and optimizing high voltage direct current cable joints. This paper presents the adjoint variable method for coupled nonlinear transient electrothermal problems as an efficient approach to compute sensitivities with respect to a large number of design parameters. The method is used to compute material sensitivities of a 320kV high voltage direct current cable joint specimen. The results are validated against sensitivities obtained via the direct sensitivity method.
In this work, we propose a novel adversarial defence mechanism for image classification - CARSO - blending the paradigms of adversarial training and adversarial purification in a synergistic robustness-enhancing way. The method builds upon an adversarially-trained classifier, and learns to map its internal representation associated with a potentially perturbed input onto a distribution of tentative clean reconstructions. Multiple samples from such distribution are classified by the same adversarially-trained model, and an aggregation of its outputs finally constitutes the robust prediction of interest. Experimental evaluation by a well-established benchmark of strong adaptive attacks, across different image datasets, shows that CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for stochastic defences. Paying a modest clean accuracy toll, our method improves by a significant margin the state-of-the-art for CIFAR-10, CIFAR-100, and TinyImageNet-200 $\ell_\infty$ robust classification accuracy against AutoAttack. Code, and instructions to obtain pre-trained models are available at //github.com/emaballarin/CARSO .
Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.
This paper studies a variant of the rate-distortion problem motivated by task-oriented semantic communication and distributed learning problems, where $M$ correlated sources are independently encoded for a central decoder. The decoder has access to a correlated side information in addition to the messages received from the encoders, and aims to recover a latent random variable correlated with the sources observed by the encoders within a given distortion constraint rather than recovering the sources themselves. We provide bounds on the rate-distortion region for this scenario in general, and characterize the rate-distortion function exactly when the sources are conditionally independent given the side information.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.