亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in large language models (LLMs) have led to significant improvements in translating natural language questions into SQL queries. While achieving high accuracy in SQL generation is crucial, little is known about the extent to which these text-to-SQL models can reliably handle diverse types of questions encountered during real-world deployment, including unanswerable ones. To explore this aspect, we introduce TrustSQL, a new benchmark designed to assess the reliability of text-to-SQL models in both single-database and cross-database settings. TrustSQL requires models to provide one of two outputs: 1) an SQL prediction or 2) abstention from making an SQL prediction, either due to potential errors in the generated SQL or when faced with unanswerable questions. For model evaluation, we explore various modeling approaches specifically designed for this task: 1) optimizing separate models for answerability detection, SQL generation, and error detection, which are then integrated into a single pipeline; and 2) developing a unified approach that uses a single model to solve this task. Experimental results using our new reliability score show that addressing this challenge involves many different areas of research and opens new avenues for model development. However, none of the methods consistently surpasses the reliability scores of a naive baseline that abstains from SQL predictions for all questions, with varying penalties.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 控制器 · Performer · Guidance · 多峰值 ·
2024 年 5 月 29 日

We introduce InstructVid2Vid, an end-to-end diffusion-based methodology for video editing guided by human language instructions. Our approach empowers video manipulation guided by natural language directives, eliminating the need for per-example fine-tuning or inversion. The proposed InstructVid2Vid model modifies a pretrained image generation model, Stable Diffusion, to generate a time-dependent sequence of video frames. By harnessing the collective intelligence of disparate models, we engineer a training dataset rich in video-instruction triplets, which is a more cost-efficient alternative to collecting data in real-world scenarios. To enhance the coherence between successive frames within the generated videos, we propose the Inter-Frames Consistency Loss and incorporate it during the training process. With multimodal classifier-free guidance during the inference stage, the generated videos is able to resonate with both the input video and the accompanying instructions. Experimental results demonstrate that InstructVid2Vid is capable of generating high-quality, temporally coherent videos and performing diverse edits, including attribute editing, background changes, and style transfer. These results underscore the versatility and effectiveness of our proposed method.

Large language models (LLMs) like ChatGPT, Gemini, or LLaMA have been trending recently, demonstrating considerable advancement and generalizability power in countless domains. However, LLMs create an even bigger black box exacerbating opacity, with interpretability limited to few approaches. The uncertainty and opacity embedded in LLMs' nature restrict their application in high-stakes domains like financial fraud, phishing, etc. Current approaches mainly rely on traditional textual classification with posterior interpretable algorithms, suffering from attackers who may create versatile adversarial samples to break the system's defense, forcing users to make trade-offs between efficiency and robustness. To address this issue, we propose a novel cascading framework called Genshin (General Shield for Natural Language Processing with Large Language Models), utilizing LLMs as defensive one-time plug-ins. Unlike most applications of LLMs that try to transform text into something new or structural, Genshin uses LLMs to recover text to its original state. Genshin aims to combine the generalizability of the LLM, the discrimination of the median model, and the interpretability of the simple model. Our experiments on the task of sentimental analysis and spam detection have shown fatal flaws of the current median models and exhilarating results on LLMs' recovery ability, demonstrating that Genshin is both effective and efficient. In our ablation study, we unearth several intriguing observations. Utilizing the LLM defender, a tool derived from the 4th paradigm, we have reproduced BERT's 15% optimal mask rate results in the 3rd paradigm of NLP. Additionally, when employing the LLM as a potential adversarial tool, attackers are capable of executing effective attacks that are nearly semantically lossless.

Large language models (LLMs) have catalyzed a paradigm shift in natural language processing, yet their limited controllability poses a significant challenge for downstream applications. We aim to address this by drawing inspiration from the neural mechanisms of the human brain, specifically Broca's and Wernicke's areas, which are crucial for language generation and comprehension, respectively. In particular, Broca's area receives cognitive decision signals from Wernicke's area, treating the language generation as an intricate decision-making process, which differs from the fully auto-regressive language generation of existing LLMs. In a similar vein, our proposed system, the BWArea model, conceptualizes language generation as a decision-making task. This model has three components: a language world model, an inverse dynamics model, and a cognitive policy. Like Wernicke's area, the inverse dynamics model is designed to deduce the underlying cognitive intentions, or latent actions, behind each token. The BWArea model is amenable to both pre-training and fine-tuning like existing LLMs. With 30B clean pre-training tokens, we have trained a BWArea model, which achieves competitive performance with LLMs of equal size (1B parameters). Unlike fully auto-regressive LLMs, its pre-training performance does not degenerate if dirty data unintentionally appears. This shows the advantage of a decomposed structure of BWArea model in reducing efforts in laborious data selection and labeling. Finally, we reveal that the BWArea model offers enhanced controllability via fine-tuning the cognitive policy with downstream reward metrics, thereby facilitating alignment with greater simplicity. On 9 out of 10 tasks from two suites, TextWorld and BigBench Hard, our method shows superior performance to auto-regressive LLMs.

Retrieval-based augmentations (RA) incorporating knowledge from an external database into language models have greatly succeeded in various knowledge-intensive (KI) tasks. However, integrating retrievals in non-knowledge-intensive (NKI) tasks is still challenging. Existing works focus on concatenating retrievals with inputs to improve model performance. Unfortunately, the use of retrieval concatenation-based augmentations causes an increase in the input length, substantially raising the computational demands of attention mechanisms. This paper proposes a new paradigm of RA named \textbf{ReFusion}, a computation-efficient Retrieval representation Fusion with bi-level optimization. Unlike previous works, ReFusion directly fuses the retrieval representations into the hidden states of models. Specifically, ReFusion leverages an adaptive retrieval integrator to seek the optimal combination of the proposed ranking schemes across different model layers. Experimental results demonstrate that the proposed ReFusion can achieve superior and robust performance in various NKI tasks.

Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.

The rapid development of large language models (LLMs) has led to significant advancements in code completion tasks. While larger models have higher accuracy, they also cost much more to run. Meanwhile, model cascading has been proven effective to conserve computational resources while enhancing accuracy in LLMs on natural language generation tasks. It generates output with the smallest model in a set, and only queries the larger models when it fails to meet predefined quality criteria. However, this strategy has not been used in code completion tasks, primarily because assessing the quality of code completions differs substantially from assessing natural language, where the former relies heavily on the functional correctness. To address this, we propose letting each model generate and execute a set of test cases for their solutions, and use the test results as the cascading threshold. We show that our model cascading strategy reduces computational costs while increases accuracy compared to generating the output with a single model. We also introduce a heuristics to determine the optimal combination of the number of solutions, test cases, and test lines each model should generate, based on the budget. Compared to speculative decoding, our method works on black-box models, having the same level of cost-accuracy trade-off, yet providing much more choices based on the server's budget. Ours is the first work to optimize cost-accuracy trade-off for LLM code generation with model cascading.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司