Transformer-based models excel in speech recognition. Existing efforts to optimize Transformer inference, typically for long-context applications, center on simplifying attention score calculations. However, streaming speech recognition models usually process a limited number of tokens each time, making attention score calculation less of a bottleneck. Instead, the bottleneck lies in the linear projection layers of multi-head attention and feedforward networks, constituting a substantial portion of the model size and contributing significantly to computation, memory, and power usage. To address this bottleneck, we propose folding attention, a technique targeting these linear layers, significantly reducing model size and improving memory and power efficiency. Experiments on on-device Transformer-based streaming speech recognition models show that folding attention reduces model size (and corresponding memory consumption) by up to 24% and power consumption by up to 23%, all without compromising model accuracy or computation overhead.
We introduce a novel approach that combines tactile estimation and control for in-hand object manipulation. By integrating measurements from robot kinematics and an image-based tactile sensor, our framework estimates and tracks object pose while simultaneously generating motion plans in a receding horizon fashion to control the pose of a grasped object. This approach consists of a discrete pose estimator that tracks the most likely sequence of object poses in a coarsely discretized grid, and a continuous pose estimator-controller to refine the pose estimate and accurately manipulate the pose of the grasped object. Our method is tested on diverse objects and configurations, achieving desired manipulation objectives and outperforming single-shot methods in estimation accuracy. The proposed approach holds potential for tasks requiring precise manipulation and limited intrinsic in-hand dexterity under visual occlusion, laying the foundation for closed-loop behavior in applications such as regrasping, insertion, and tool use. Please see //sites.google.com/view/texterity for videos of real-world demonstrations.
This paper introduces LeftRefill, an innovative approach to efficiently harness large Text-to-Image (T2I) diffusion models for reference-guided image synthesis. As the name implies, LeftRefill horizontally stitches reference and target views together as a whole input. The reference image occupies the left side, while the target canvas is positioned on the right. Then, LeftRefill paints the right-side target canvas based on the left-side reference and specific task instructions. Such a task formulation shares some similarities with contextual inpainting, akin to the actions of a human painter. This novel formulation efficiently learns both structural and textured correspondence between reference and target without other image encoders or adapters. We inject task and view information through cross-attention modules in T2I models, and further exhibit multi-view reference ability via the re-arranged self-attention modules. These enable LeftRefill to perform consistent generation as a generalized model without requiring test-time fine-tuning or model modifications. Thus, LeftRefill can be seen as a simple yet unified framework to address reference-guided synthesis. As an exemplar, we leverage LeftRefill to address two different challenges: reference-guided inpainting and novel view synthesis, based on the pre-trained StableDiffusion. Codes and models are released at //github.com/ewrfcas/LeftRefill.
Hyper-relational knowledge graphs (KGs) contain additional key-value pairs, providing more information about the relations. In many scenarios, the same relation can have distinct key-value pairs, making the original triple fact more recognizable and specific. Prior studies on hyper-relational KGs have established a solid standard method for hyper-relational graph encoding. In this work, we propose a message-passing-based graph encoder with global relation structure awareness ability, which we call ReSaE. Compared to the prior state-of-the-art approach, ReSaE emphasizes the interaction of relations during message passing process and optimizes the readout structure for link prediction tasks. Overall, ReSaE gives a encoding solution for hyper-relational KGs and ensures stronger performance on downstream link prediction tasks. Our experiments demonstrate that ReSaE achieves state-of-the-art performance on multiple link prediction benchmarks. Furthermore, we also analyze the influence of different model structures on model performance.
The anchor-document data derived from web graphs offers a wealth of paired information for training dense retrieval models in an unsupervised manner. However, the presence of inherent noise invariably compromises the robustness of training dense retrieval models, consequently hurting the performance. In this paper, we introduce WebDRO, an efficient approach for clustering the web graph data and optimizing group weights to enhance the robustness of the pretraining process of dense retrieval models on web graphs. Initially, we build an embedding model for clustering anchor-document pairs. Specifically, we contrastively train the embedding model for link prediction, which guides the embedding model in capturing the inherent document features behind the web graph links. Subsequently, we employ the group distributional robust optimization to recalibrate the weights across different clusters of anchor-document pairs during training dense retrieval models, directing the model to assign higher weights to clusters with higher loss and focus more on worst-case scenarios. Our experiments conducted on MS MARCO and BEIR demonstrate that our method can effectively improve retrieval performance in unsupervised training settings. Further analysis confirms the stability and validity of group weights learned by WebDRO. All codes will be released via GitHub.
Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled pre-training dataset, which consists of images or image-text pairs. CL is vulnerable to data poisoning based backdoor attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-training dataset so the encoder is backdoored. However, existing DPBAs achieve limited effectiveness. In this work, we take the first step to analyze the limitations of existing backdoor attacks and propose new DPBAs called CorruptEncoder to CL. CorruptEncoder introduces a new attack strategy to create poisoned inputs and uses a theory-guided method to maximize attack effectiveness. Our experiments show that CorruptEncoder substantially outperforms existing DPBAs. In particular, CorruptEncoder is the first DPBA that achieves more than 90% attack success rates with only a few (3) reference images and a small poisoning ratio 0.5%. Moreover, we also propose a defense, called localized cropping, to defend against DPBAs. Our results show that our defense can reduce the effectiveness of DPBAs, but it sacrifices the utility of the encoder, highlighting the need for new defenses.
Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: Predicting human decision in off-policy evaluation (OPE), focusing on language-based persuasion games, where the agent's goal is to influence its partner's decisions through verbal messages. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. Our approach involves training a model on human interactions with one agents subset to predict decisions when interacting with another. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: //github.com/eilamshapira/HumanChoicePrediction
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.