亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study various novel complexity measures for two-sided matching mechanisms, applied to the two canonical strategyproof matching mechanisms, Deferred Acceptance (DA) and Top Trading Cycles (TTC). Our metrics are designed to capture the complexity of various structural (rather than computational) concerns, in particular ones of recent interest from economics. We consider a canonical, flexible approach to formalizing our questions: define a protocol or data structure performing some task, and bound the number of bits that it requires. Our results apply this approach to four questions of general interest; for matching applicants to institutions, we ask: (1) How can one applicant affect the outcome matching? (2) How can one applicant affect another applicant's set of options? (3) How can the outcome matching be represented / communicated? (4) How can the outcome matching be verified? We prove that DA and TTC are comparable in complexity under questions (1) and (4), giving new tight lower-bound constructions and new verification protocols. Under questions (2) and (3), we prove that TTC is more complex than DA. For question (2), we prove this by giving a new characterization of which institutions are removed from each applicant's set of options when a new applicant is added in DA; this characterization may be of independent interest. For question (3), our result gives lower bounds proving the tightness of existing constructions for TTC. This shows that the relationship between the matching and the priorities is more complex in TTC than in DA, formalizing previous intuitions from the economics literature. Together, our results complement recent work that models the complexity of observing strategyproofness and shows that DA is more complex than TTC. This emphasizes that diverse considerations must factor into gauging the complexity of matching mechanisms.

相關內容

Motivated by questions in theoretical computer science and quantum information theory, we study the classical problem of determining linear spaces of matrices of bounded rank. Spaces of bounded rank three were classified in 1983, and it has been a longstanding problem to classify spaces of bounded rank four. Before our study, no non-classical example of such a space was known. We exhibit two non-classical examples of such spaces and give the full classification of basic spaces of bounded rank four. There are exactly four such up to isomorphism. We also take steps to bring together the methods of the linear algebra community and the algebraic geometry community used to study spaces of bounded rank.

In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.

This paper introduces discrete-holomorphic Perfectly Matched Layers (PMLs) specifically designed for high-order finite difference (FD) discretizations of the scalar wave equation. In contrast to standard PDE-based PMLs, the proposed method achieves the remarkable outcome of completely eliminating numerical reflections at the PML interface, in practice achieving errors at the level of machine precision. Our approach builds upon the ideas put forth in a recent publication [Journal of Computational Physics 381 (2019): 91-109] expanding the scope from the standard second-order FD method to arbitrary high-order schemes. This generalization uses additional localized PML variables to accommodate the larger stencils employed. We establish that the numerical solutions generated by our proposed schemes exhibit an exponential decay rate as they propagate within the PML domain. To showcase the effectiveness of our method, we present a variety of numerical examples, including waveguide problems. These examples highlight the importance of employing high-order schemes to effectively address and minimize undesired numerical dispersion errors, emphasizing the practical advantages and applicability of our approach.

Error-correcting codes have an important role in data storage and transmission and in cryptography, particularly in the post-quantum era. Hermitian matrices over finite fields and equipped with the rank metric have the potential to offer enhanced security with greater efficiency in encryption and decryption. One crucial tool for evaluating the error-correcting capabilities of a code is its weight distribution and the MacWilliams Theorem has long been used to identify this structure of new codes from their known duals. Earlier papers have developed the MacWilliams Theorem for certain classes of matrices in the form of a functional transformation, developed using $q$-algebra, character theory and Generalised Krawtchouk polynomials, which is easy to apply and also allows for moments of the weight distribution to be found. In this paper, recent work by Kai-Uwe Schmidt on the properties of codes based on Hermitian matrices such as bounds on their size and the eigenvalues of their association scheme is extended by introducing a negative-$q$ algebra to establish a MacWilliams Theorem in this form together with some of its associated moments. The similarities in this approach and in the paper for the Skew-Rank metric by Friedlander et al. have been emphasised to facilitate future generalisation to any translation scheme.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.

Deterministic finite automata (DFA) are a classic tool for high throughput matching of regular expressions, both in theory and practice. Due to their high space consumption, extensive research has been devoted to compressed representations of DFAs that still support efficient pattern matching queries. Kumar~et~al.~[SIGCOMM 2006] introduced the \emph{delayed deterministic finite automaton} (\ddfa{}) which exploits the large redundancy between inter-state transitions in the automaton. They showed it to obtain up to two orders of magnitude compression of real-world DFAs, and their work formed the basis of numerous subsequent results. Their algorithm, as well as later algorithms based on their idea, have an inherent quadratic-time bottleneck, as they consider every pair of states to compute the optimal compression. In this work we present a simple, general framework based on locality-sensitive hashing for speeding up these algorithms to achieve sub-quadratic construction times for \ddfa{}s. We apply the framework to speed up several algorithms to near-linear time, and experimentally evaluate their performance on real-world regular expression sets extracted from modern intrusion detection systems. We find an order of magnitude improvement in compression times, with either little or no loss of compression, or even significantly better compression in some cases.

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification, and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.

北京阿比特科技有限公司