亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiple robots could perceive a scene (e.g., detect objects) collaboratively better than individuals, although easily suffer from adversarial attacks when using deep learning. This could be addressed by the adversarial defense, but its training requires the often-unknown attacking mechanism. Differently, we propose ROBOSAC, a novel sampling-based defense strategy generalizable to unseen attackers. Our key idea is that collaborative perception should lead to consensus rather than dissensus in results compared to individual perception. This leads to our hypothesize-and-verify framework: perception results with and without collaboration from a random subset of teammates are compared until reaching a consensus. In such a framework, more teammates in the sampled subset often entail better perception performance but require longer sampling time to reject potential attackers. Thus, we derive how many sampling trials are needed to ensure the desired size of an attacker-free subset, or equivalently, the maximum size of such a subset that we can successfully sample within a given number of trials. We validate our method on the task of collaborative 3D object detection in autonomous driving scenarios.

相關內容

Nonlinear model predictive control (MPC) is a flexible and increasingly popular framework used to synthesize feedback control strategies that can satisfy both state and control input constraints. In this framework, an optimization problem, subjected to a set of dynamics constraints characterized by a nonlinear dynamics model, is solved at each time step. Despite its versatility, the performance of nonlinear MPC often depends on the accuracy of the dynamics model. In this work, we leverage deep learning tools, namely knowledge-based neural ordinary differential equations (KNODE) and deep ensembles, to improve the prediction accuracy of this model. In particular, we learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to obtain an accurate prediction of the true system dynamics. This learned model is then integrated into a novel learning-enhanced nonlinear MPC framework. We provide sufficient conditions that guarantees asymptotic stability of the closed-loop system and show that these conditions can be implemented in practice. We show that the KNODE ensemble provides more accurate predictions and illustrate the efficacy and closed-loop performance of the proposed nonlinear MPC framework using two case studies.

Feature attribution aims to explain the reasoning behind a black-box model's prediction by identifying the impact of each feature on the prediction. Recent work has extended feature attribution to interactions between multiple features. However, the lack of a unified framework has led to a proliferation of methods that are often not directly comparable. This paper introduces a parameterized attribution framework -- the Weighted M\"obius Score -- and (i) shows that many different attribution methods for both individual features and feature interactions are special cases and (ii) identifies some new methods. By studying the vector space of attribution methods, our framework utilizes standard linear algebra tools and provides interpretations in various fields, including cooperative game theory and causal mediation analysis. We empirically demonstrate the framework's versatility and effectiveness by applying these attribution methods to feature interactions in sentiment analysis and chain-of-thought prompting.

Point cloud completion estimates complete shapes from incomplete point clouds to obtain higher-quality point cloud data. Most existing methods only consider global object features, ignoring spatial and semantic information of adjacent points. They cannot distinguish structural information well between different object parts, and the robustness of models is poor. To tackle these challenges, we propose an information interaction-based generative network for point cloud completion ($\mathbf{DualGenerator}$). It contains an adversarial generation path and a variational generation path, which interact with each other and share weights. DualGenerator introduces a local refinement module in generation paths, which captures general structures from partial inputs, and then refines shape details of the point cloud. It promotes completion in the unknown region and makes a distinction between different parts more obvious. Moreover, we design DGStyleGAN to improve the generation quality further. It promotes the robustness of this network combined with fusion analysis of dual-path completion results. Qualitative and quantitative evaluations demonstrate that our method is superior on MVP and Completion3D datasets. The performance will not degrade significantly after adding noise interference or sparse sampling.

Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.

Perceptual similarity metrics have progressively become more correlated with human judgments on perceptual similarity; however, despite recent advances, the addition of an imperceptible distortion can still compromise these metrics. In our study, we systematically examine the robustness of these metrics to imperceptible adversarial perturbations. Following the two-alternative forced-choice experimental design with two distorted images and one reference image, we perturb the distorted image closer to the reference via an adversarial attack until the metric flips its judgment. We first show that all metrics in our study are susceptible to perturbations generated via common adversarial attacks such as FGSM, PGD, and the One-pixel attack. Next, we attack the widely adopted LPIPS metric using spatial-transformation-based adversarial perturbations (stAdv) in a white-box setting to craft adversarial examples that can effectively transfer to other similarity metrics in a black-box setting. We also combine the spatial attack stAdv with PGD ($\ell_\infty$-bounded) attack to increase transferability and use these adversarial examples to benchmark the robustness of both traditional and recently developed metrics. Our benchmark provides a good starting point for discussion and further research on the robustness of metrics to imperceptible adversarial perturbations.

The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio-temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio-temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time-varying parameters in high-dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE-EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE-EnKF outperforms the original EnKF in a synthetic experiment using a two-scale Lorenz96 model. One advantage of HOOPE-EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE-EnKF as a practical method for improving parameterizations of process-based models and prediction in real-world applications such as numerical weather prediction.

In the face of increasingly severe privacy threats in the era of data and AI, the US Census Bureau has recently adopted differential privacy, the de facto standard of privacy protection for the 2020 Census release. Enforcing differential privacy involves adding carefully calibrated random noise to sensitive demographic information prior to its release. This change has the potential to impact policy decisions like political redistricting and other high-stakes practices, partly because tremendous federal funds and resources are allocated according to datasets (like Census data) released by the US government. One under-explored yet important application of such data is the redrawing of school attendance boundaries to foster less demographically segregated schools. In this study, we ask: how differential privacy might impact diversity-promoting boundaries in terms of resulting levels of segregation, student travel times, and school switching requirements? Simulating alternative boundaries using differentially-private student counts across 67 Georgia districts, we find that increasing data privacy requirements decreases the extent to which alternative boundaries might reduce segregation and foster more diverse and integrated schools, largely by reducing the number of students who would switch schools under boundary changes. Impacts on travel times are minimal. These findings point to a privacy-diversity tradeoff local educational policymakers may face in forthcoming years, particularly as computational methods are increasingly poised to facilitate attendance boundary redrawings in the pursuit of less segregated schools.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司