Generative linguistic steganography mainly utilized language models and applied steganographic sampling (stegosampling) to generate high-security steganographic text (stegotext). However, previous methods generally lead to statistical differences between the conditional probability distributions of stegotext and natural text, which brings about security risks. In this paper, to further ensure security, we present a novel provably secure generative linguistic steganographic method ADG, which recursively embeds secret information by Adaptive Dynamic Grouping of tokens according to their probability given by an off-the-shelf language model. We not only prove the security of ADG mathematically, but also conduct extensive experiments on three public corpora to further verify its imperceptibility. The experimental results reveal that the proposed method is able to generate stegotext with nearly perfect security.
In this article, we propose the outcome-adjusted balance measure to perform model selection for the generalized propensity score (GPS), which serves as an essential component in estimation of the pairwise average treatment effects (ATEs) in observational studies with more than two treatment levels. The primary goal of the balance measure is to identify the GPS model specification such that the resulting ATE estimator is consistent and efficient. Following recent empirical and theoretical evidence, we establish that the optimal GPS model should only include covariates related to the outcomes. Given a collection of candidate GPS models, the outcome-adjusted balance measure imputes all baseline covariates by matching on each candidate model, and selects the model that minimizes a weighted sum of absolute mean differences between the imputed and original values of the covariates. The weights are defined to leverage the covariate-outcome relationship, so that GPS models without optimal variable selection are penalized. Under appropriate assumptions, we show that the outcome-adjusted balance measure consistently selects the optimal GPS model, so that the resulting GPS matching estimator is asymptotically normal and efficient. We compare its finite sample performance with existing measures in a simulation study. We illustrate an application of the proposed methodology in the analysis of the Tutoring data.
Recent advances in linguistic steganalysis have successively applied CNNs, RNNs, GNNs and other deep learning models for detecting secret information in generative texts. These methods tend to seek stronger feature extractors to achieve higher steganalysis effects. However, we have found through experiments that there actually exists significant difference between automatically generated steganographic texts and carrier texts in terms of the conditional probability distribution of individual words. Such kind of statistical difference can be naturally captured by the language model used for generating steganographic texts, which drives us to give the classifier a priori knowledge of the language model to enhance the steganalysis ability. To this end, we present two methods to efficient linguistic steganalysis in this paper. One is to pre-train a language model based on RNN, and the other is to pre-train a sequence autoencoder. Experimental results show that the two methods have different degrees of performance improvement when compared to the randomly initialized RNN classifier, and the convergence speed is significantly accelerated. Moreover, our methods have achieved the best detection results.
As a natural language generation task, it is challenging to generate informative and coherent review text. In order to enhance the informativeness of the generated text, existing solutions typically learn to copy entities or triples from knowledge graphs (KGs). However, they lack overall consideration to select and arrange the incorporated knowledge, which tends to cause text incoherence. To address the above issue, we focus on improving entity-centric coherence of the generated reviews by leveraging the semantic structure of KGs. In this paper, we propose a novel Coherence Enhanced Text Planning model (CETP) based on knowledge graphs (KGs) to improve both global and local coherence for review generation. The proposed model learns a two-level text plan for generating a document: (1) the document plan is modeled as a sequence of sentence plans in order, and (2) the sentence plan is modeled as an entity-based subgraph from KG. Local coherence can be naturally enforced by KG subgraphs through intra-sentence correlations between entities. For global coherence, we design a hierarchical self-attentive architecture with both subgraph- and node-level attention to enhance the correlations between subgraphs. To our knowledge, we are the first to utilize a KG-based text planning model to enhance text coherence for review generation. Extensive experiments on three datasets confirm the effectiveness of our model on improving the content coherence of generated texts.
Current training objectives of existing person Re-IDentification (ReID) models only ensure that the loss of the model decreases on selected training batch, with no regards to the performance on samples outside the batch. It will inevitably cause the model to over-fit the data in the dominant position (e.g., head data in imbalanced class, easy samples or noisy samples). %We call the sample that updates the model towards generalizing on more data a generalizable sample. The latest resampling methods address the issue by designing specific criterion to select specific samples that trains the model generalize more on certain type of data (e.g., hard samples, tail data), which is not adaptive to the inconsistent real world ReID data distributions. Therefore, instead of simply presuming on what samples are generalizable, this paper proposes a one-for-more training objective that directly takes the generalization ability of selected samples as a loss function and learn a sampler to automatically select generalizable samples. More importantly, our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework which is able to simultaneously train ReID models and the sampler in an end-to-end fashion. The experimental results show that our method can effectively improve the ReID model training and boost the performance of ReID models.
BERT-based architectures currently give state-of-the-art performance on many NLP tasks, but little is known about the exact mechanisms that contribute to its success. In the current work, we focus on the interpretation of self-attention, which is one of the fundamental underlying components of BERT. Using a subset of GLUE tasks and a set of handcrafted features-of-interest, we propose the methodology and carry out a qualitative and quantitative analysis of the information encoded by the individual BERT's heads. Our findings suggest that there is a limited set of attention patterns that are repeated across different heads, indicating the overall model overparametrization. While different heads consistently use the same attention patterns, they have varying impact on performance across different tasks. We show that manually disabling attention in certain heads leads to a performance improvement over the regular fine-tuned BERT models.
Generating plausible hair image given limited guidance, such as sparse sketches or low-resolution image, has been made possible with the rise of Generative Adversarial Networks (GANs). Traditional image-to-image translation networks can generate recognizable results, but finer textures are usually lost and blur artifacts commonly exist. In this paper, we propose a two-phase generative model for high-quality hair image synthesis. The two-phase pipeline first generates a coarse image by an existing image translation model, then applies a re-generating network with self-enhancing capability to the coarse image. The self-enhancing capability is achieved by a proposed structure extraction layer, which extracts the texture and orientation map from a hair image. Extensive experiments on two tasks, Sketch2Hair and Hair Super-Resolution, demonstrate that our approach is able to synthesize plausible hair image with finer details, and outperforms the state-of-the-art.
Both generative adversarial network models and variational autoencoders have been widely used to approximate probability distributions of datasets. Although they both use parametrized distributions to approximate the underlying data distribution, whose exact inference is intractable, their behaviors are very different. In this report, we summarize our experiment results that compare these two categories of models in terms of fidelity and mode collapse. We provide a hypothesis to explain their different behaviors and propose a new model based on this hypothesis. We further tested our proposed model on MNIST dataset and CelebA dataset.
Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.
There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper we propose the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs that have negative log-likelihood under the generative model exceeding a threshold pre-specified using training data. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and the proposed detection methods achieve high detection rates against many recently proposed attacks.
Generating novel, yet realistic, images of persons is a challenging task due to the complex interplay between the different image factors, such as the foreground, background and pose information. In this work, we aim at generating such images based on a novel, two-stage reconstruction pipeline that learns a disentangled representation of the aforementioned image factors and generates novel person images at the same time. First, a multi-branched reconstruction network is proposed to disentangle and encode the three factors into embedding features, which are then combined to re-compose the input image itself. Second, three corresponding mapping functions are learned in an adversarial manner in order to map Gaussian noise to the learned embedding feature space, for each factor respectively. Using the proposed framework, we can manipulate the foreground, background and pose of the input image, and also sample new embedding features to generate such targeted manipulations, that provide more control over the generation process. Experiments on Market-1501 and Deepfashion datasets show that our model does not only generate realistic person images with new foregrounds, backgrounds and poses, but also manipulates the generated factors and interpolates the in-between states. Another set of experiments on Market-1501 shows that our model can also be beneficial for the person re-identification task.