亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To guarantee excellent reliability performance in ultra-reliable low-latency communications (URLLC), pragmatic precoder design is an effective approach. However, an efficient precoder design highly depends on the accurate instantaneous channel state information at the transmitter (ICSIT), which however, is not always available in practice. To overcome this problem, in this paper, we focus on the orthogonal time frequency space (OTFS)-based URLLC system and adopt a deep learning (DL) approach to directly predict the precoder for the next time frame to minimize the frame error rate (FER) via implicitly exploiting the features from estimated historical channels in the delay-Doppler domain. By doing this, we can guarantee the system reliability even without the knowledge of ICSIT. To this end, a general precoder design problem is formulated where a closed-form theoretical FER expression is specifically derived to characterize the system reliability. Then, a delay-Doppler domain channels-aware convolutional long short-term memory (CLSTM) network (DDCL-Net) is proposed for predictive precoder design. In particular, both the convolutional neural network and LSTM modules are adopted in the proposed neural network to exploit the spatial-temporal features of wireless channels for improving the learning performance. Finally, simulation results demonstrated that the FER performance of the proposed method approaches that of the perfect ICSI-aided scheme.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

To fully exploit the benefits of the fog environment, efficient management of data locality is crucial. Blind or reactive data replication falls short in harnessing the potential of fog computing, necessitating more advanced techniques for predicting where and when clients will connect. While spatial prediction has received considerable attention, temporal prediction remains understudied. Our paper addresses this gap by examining the advantages of incorporating temporal prediction into existing spatial prediction models. We also provide a comprehensive analysis of spatio-temporal prediction models, such as Deep Neural Networks and Markov models, in the context of predictive replication. We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction, leveraging sequential and periodical user movement patterns. In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability.

In this work, we consider the problem of multiuser scheduling for the downlink of cell-free massive multi-input multi-output networks with clustering. In particular, we develop a multiuser scheduling algorithm based on an enhanced greedy method that is deployed with linear precoding and clustering. Closed-form expressions for the sum-rate performance are derived when imperfect channel state information is considered. The proposed scheduling algorithm is then analyzed along with its computational cost and network signaling load. Numerical results show that the proposed scheduling method outperforms the existing methods and in low signal-to-noise ratios, its performance becomes much closer to the optimal approach.

We address the problem of controlling Connected and Automated Vehicles (CAVs) in conflict areas of a traffic network subject to hard safety constraints. It has been shown that such problems can be solved through a combination of tractable optimal control problems and Control Barrier Functions (CBFs) that guarantee the satisfaction of all constraints. These solutions can be reduced to a sequence of Quadratic Programs (QPs) which are efficiently solved on line over discrete time steps. However, guaranteeing the feasibility of the CBF-based QP method within each discretized time interval requires the careful selection of time steps which need to be sufficiently small. This creates computational requirements and communication rates between agents which may hinder the controller's application to real CAVs. In this paper, we overcome this limitation by adopting an event-triggered approach for CAVs in a conflict area such that the next QP is triggered by properly defined events with a safety guarantee. We present a laboratory-scale test bed we have developed to emulate merging roadways using mobile robots as CAVs which can be used to demonstrate how the event-triggered scheme is computationally efficient and can handle measurement uncertainties and noise compared to time-driven control while guaranteeing safety.

As an increasing number of businesses becomes powered by machine-learning, inference becomes a core operation, with a growing trend to be offered as a service. In this context, the inference task must meet certain service-level objectives (SLOs), such as high throughput and low latency. However, these targets can be compromised by interference caused by long- or short-lived co-located tasks. Prior works focus on the generic problem of co-scheduling to mitigate the effect of interference on the performance-critical task. In this work, we focus on inference pipelines and propose ODIN, a technique to mitigate the effect of interference on the performance of the inference task, based on the online scheduling of the pipeline stages. Our technique detects interference online and automatically re-balances the pipeline stages to mitigate the performance degradation of the inference task. We demonstrate that ODIN successfully mitigates the effect of interference, sustaining the latency and throughput of CNN inference, and outperforms the least-loaded scheduling (LLS), a common technique for interference mitigation. Additionally, it is effective in maintaining service-level objectives for inference, and it is scalable to large network models executing on multiple processing elements.

The neural Ordinary Differential Equation (ODE) model has shown success in learning complex continuous-time processes from observations on discrete time stamps. In this work, we consider the modeling and forecasting of time series data that are non-stationary and may have sharp changes like spikes. We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states, and we adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series. Theoretically, RNN-ODE-Adap yields provably a consistent estimation of the intensity function for the Hawkes-type time series data. We also provide an approximation analysis of the RNN-ODE model showing the benefit of adaptive steps. The proposed model is demonstrated to achieve higher prediction accuracy with reduced computational cost on simulated dynamic system data and point process data and on a real electrocardiography dataset.

Due to the over-parameterization of neural networks, many model compression methods based on pruning and quantization have emerged. They are remarkable in reducing the size, parameter number, and computational complexity of the model. However, most of the models compressed by such methods need the support of special hardware and software, which increases the deployment cost. Moreover, these methods are mainly used in classification tasks, and rarely directly used in detection tasks. To address these issues, for the object detection network we introduce a three-stage model compression method: dynamic sparse training, group channel pruning, and spatial attention distilling. Firstly, to select out the unimportant channels in the network and maintain a good balance between sparsity and accuracy, we put forward a dynamic sparse training method, which introduces a variable sparse rate, and the sparse rate will change with the training process of the network. Secondly, to reduce the effect of pruning on network accuracy, we propose a novel pruning method called group channel pruning. In particular, we divide the network into multiple groups according to the scales of the feature layer and the similarity of module structure in the network, and then we use different pruning thresholds to prune the channels in each group. Finally, to recover the accuracy of the pruned network, we use an improved knowledge distillation method for the pruned network. Especially, we extract spatial attention information from the feature maps of specific scales in each group as knowledge for distillation. In the experiments, we use YOLOv4 as the object detection network and PASCAL VOC as the training dataset. Our method reduces the parameters of the model by 64.7 % and the calculation by 34.9%.

Conditioning on variables affected by treatment can induce post-treatment bias when estimating causal effects. Although this suggests that researchers should measure potential moderators before administering the treatment in an experiment, doing so may also bias causal effect estimation if the covariate measurement primes respondents to react differently to the treatment. This paper formally analyzes this trade-off between post-treatment and priming biases in three experimental designs that vary when moderators are measured: pre-treatment, post-treatment, or a randomized choice between the two. We derive nonparametric bounds for interactions between the treatment and the moderator in each design and show how to use substantive assumptions to narrow these bounds. These bounds allow researchers to assess the sensitivity of their empirical findings to either source of bias. We extend the basic framework in two ways. First, we apply the framework to the case of post-treatment attention checks and bound how much inattentive respondents can attenuate estimated treatment effects. Second, we develop a parametric Bayesian approach to incorporate pre-treatment covariates in the analysis to sharpen our inferences and quantify estimation uncertainty. We apply these methods to a survey experiment on electoral messaging. We conclude with practical recommendations for scholars designing experiments.

In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司