亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we establish a baseline potential for how modern model-generated text explanations of movie recommendations may help users, and explore what different components of these text explanations that users like or dislike, especially in contrast to existing human movie reviews. We found that participants gave no significantly different rankings between movies, nor did they give significantly different individual quality scores to reviews of movies that they had never seen before. However, participants did mark reviews as significantly better when they were movies they had seen before. We also explore specific aspects of movie review texts that participants marked as important for each quality. Overall, we establish that modern LLMs are a promising source of recommendation explanations, and we intend on further exploring personalizable text explanations in the future.

相關內容

Blockchain smart contracts have emerged as a transformative force in the digital realm, spawning a diverse range of compelling applications. Since solidity smart contracts across various domains manage trillions of dollars in virtual coins, they become a prime target for attacks. One of the primary challenges is keeping abreast of the latest techniques and tools for developing secure smart contracts and examining those already deployed. In this paper, we seek to address these challenges from four aspects: (1) We begin by examining ten automatic tools, specifically focusing on their methodologies and their ability to identify vulnerabilities in solidity smart contracts. (2) We propose a novel criterion for evaluating these tools, based on the ISO/IEC 25010 standard. (3) To facilitate the evaluation of the selected tools, we construct a benchmark that encompasses two distinct datasets: a collection of 389 labelled smart contracts and a scaled set of 20,000 unique cases from real-world contracts. (4) We provide a comparison of the selected tools, offering insights into their strengths and weaknesses and highlighting areas where further improvements are needed. Through this evaluation, we hope to provide developers and researchers with valuable guidance on selecting and using smart contract analysis tools and contribute to the ongoing efforts to improve the security and reliability of smart contracts.

The valence analysis of speakers' utterances or written posts helps to understand the activation and variations of the emotional state throughout the conversation. More recently, the concept of Emotion Carriers (EC) has been introduced to explain the emotion felt by the speaker and its manifestations. In this work, we investigate the natural inter-dependency of valence and ECs via a multi-task learning approach. We experiment with Pre-trained Language Models (PLM) for single-task, two-step, and joint settings for the valence and EC prediction tasks. We compare and evaluate the performance of generative (GPT-2) and discriminative (BERT) architectures in each setting. We observed that providing the ground truth label of one task improves the prediction performance of the models in the other task. We further observed that the discriminative model achieves the best trade-off of valence and EC prediction tasks in the joint prediction setting. As a result, we attain a single model that performs both tasks, thus, saving computation resources at training and inference times.

In the quest for unveiling novel categories at test time, we confront the inherent limitations of traditional supervised recognition models that are restricted by a predefined category set. While strides have been made in the realms of self-supervised and open-world learning towards test-time category discovery, a crucial yet often overlooked question persists: what exactly delineates a \textit{category}? In this paper, we conceptualize a \textit{category} through the lens of optimization, viewing it as an optimal solution to a well-defined problem. Harnessing this unique conceptualization, we propose a novel, efficient and self-supervised method capable of discovering previously unknown categories at test time. A salient feature of our approach is the assignment of minimum length category codes to individual data instances, which encapsulates the implicit category hierarchy prevalent in real-world datasets. This mechanism affords us enhanced control over category granularity, thereby equipping our model to handle fine-grained categories adeptly. Experimental evaluations, bolstered by state-of-the-art benchmark comparisons, testify to the efficacy of our solution in managing unknown categories at test time. Furthermore, we fortify our proposition with a theoretical foundation, providing proof of its optimality. Our code is available at: \url{//github.com/SarahRastegar/InfoSieve}.

The openness and influence of video-sharing platforms (VSPs) such as YouTube and TikTok attracted creators to share videos on various social issues. Although social issue videos (SIVs) affect public opinions and breed misinformation, how VSP users obtain information and interact with SIVs is under-explored. This work surveyed 659 YouTube and 127 TikTok users to understand the motives for consuming SIVs on VSPs. We found that VSP users are primarily motivated by the information and entertainment gratifications to use the platform. VSP users use SIVs for information-seeking purposes and find YouTube and TikTok convenient to interact with SIVs. VSP users moderately watch SIVs for entertainment and inactively engage in social interactions. SIV consumption is associated with information and socialization gratifications of the platform. VSP users appreciate the diversity of information and opinions but would also do their own research and are concerned about the misinformation and echo chamber problems.

Understanding different human attributes and how they affect model behavior may become a standard need for all model creation and usage, from traditional computer vision tasks to the newest multimodal generative AI systems. In computer vision specifically, we have relied on datasets augmented with perceived attribute signals (e.g., gender presentation, skin tone, and age) and benchmarks enabled by these datasets. Typically labels for these tasks come from human annotators. However, annotating attribute signals, especially skin tone, is a difficult and subjective task. Perceived skin tone is affected by technical factors, like lighting conditions, and social factors that shape an annotator's lived experience. This paper examines the subjectivity of skin tone annotation through a series of annotation experiments using the Monk Skin Tone (MST) scale, a small pool of professional photographers, and a much larger pool of trained crowdsourced annotators. Along with this study we release the Monk Skin Tone Examples (MST-E) dataset, containing 1515 images and 31 videos spread across the full MST scale. MST-E is designed to help train human annotators to annotate MST effectively. Our study shows that annotators can reliably annotate skin tone in a way that aligns with an expert in the MST scale, even under challenging environmental conditions. We also find evidence that annotators from different geographic regions rely on different mental models of MST categories resulting in annotations that systematically vary across regions. Given this, we advise practitioners to use a diverse set of annotators and a higher replication count for each image when annotating skin tone for fairness research.

In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception of the actions, interactions, and expressions of all characters or a single character during a given time period. We categorize the moments into two major types: story moments and discourse moments. Each type of moment can further be classified into three types, which we call universal storytelling moments. We believe these universal moments foster or deteriorate the emotional attachment of the audience to a particular character or the story. We present a methodology to catalog the occurrences of these universal moments as they are found in the story. The cataloged moments can be represented using curves or color strips. Therefore, we can visualize a character's journey through the story as either a 3D curve or a color strip. We also demonstrated that both story and discourse moments can be transformed into one lump-sum attraction parameter. The attraction parameter in time provides a function that can be plotted graphically onto a timeline illustrating changes in the emotional attachment of audience to a character or the story. By inspecting these functions the story analyst can analytically decipher the moments in the story where the attachment is being established, maintained, strengthened, or conversely where it is languishing.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司