A kernel of a directed graph is a subset of vertices that is both independent and absorbing (every vertex not in the kernel has an out-neighbour in the kernel). Not all directed graphs contain kernels, and computing a kernel or deciding that none exist is NP-complete even on low-degree planar digraphs. The existing polynomial-time algorithms for this problem all restrict both the undirected structure and the edge orientations of the input: for example, to chordal graphs without bidirectional edges (Pass-Lanneau, Igarashi and Meunier, Discrete Appl Math 2020) or to permutation graphs where each clique has a sink (Abbas and Saoula, 4OR 2005). By contrast, we count the kernels of a fuzzy circular interval graph in polynomial time, regardless of its edge orientations, and return a kernel when one exists. (Fuzzy circular graphs were introduced by Chudnovsky and Seymour in their structure theorem for claw-free graphs.) We also consider kernels on cographs, where we establish NP-hardness in general but linear running times on the subclass of threshold graphs.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.
One fundamental problem in temporal graph analysis is to count the occurrences of small connected subgraph patterns (i.e., motifs), which benefits a broad range of real-world applications, such as anomaly detection, structure prediction, and network representation learning. However, existing works focused on exacting temporal motif are not scalable to large-scale temporal graph data, due to their heavy computational costs or inherent inadequacy of parallelism. In this work, we propose a scalable parallel framework for exactly counting temporal motifs in large-scale temporal graphs. We first categorize the temporal motifs based on their distinct properties, and then design customized algorithms that offer efficient strategies to exactly count the motif instances of each category. Moreover, our compact data structures, namely triple and quadruple counters, enable our algorithms to directly identify the temporal motif instances of each category, according to edge information and the relationship between edges, therefore significantly improving the counting efficiency. Based on the proposed counting algorithms, we design a hierarchical parallel framework that features both inter- and intra-node parallel strategies, and fully leverages the multi-threading capacity of modern CPU to concurrently count all temporal motifs. Extensive experiments on sixteen real-world temporal graph datasets demonstrate the superiority and capability of our proposed framework for temporal motif counting, achieving up to 538* speedup compared to the state-of-the-art methods. The source code of our method is available at: //github.com/steven-ccq/FAST-temporal-motif.
A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.
We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when initialized on a Bernoulli random configuration with density $p$, for some/all $0 < p < 1$. Second, there exists an automaton whose space-filling property depends on $p$ in a non-monotone way.
We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. The expected running time of our algorithm is near-linear in $n$ and a fixed polynomial in $\Delta$, where $n$ is the number of variables and $\Delta$ is the max degree of constraints. Previously, up to similar conditions, sampling algorithms with running time polynomial in both $n$ and $\Delta$, only existed for the almost atomic case, where each constraint is violated by a small number of forbidden local configurations. Our sampling approach departs from all previous fast algorithms for sampling LLL, which were based on Markov chains. A crucial step of our algorithm is a recursive marginal sampler that is of independent interests. Within a local lemma regime, this marginal sampler can draw a random value for a variable according to its marginal distribution, at a local cost independent of the size of the CSP.
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of $H$-free graphs, that is, graphs that do not contain some graph $H$ as an induced subgraph, have proven to be an ideal testbed for such a complexity study. However, if the forbidden graph $H$ contains a cycle or claw, then these problems often stay NP-complete. A recent complexity study on the $k$-Colouring problem shows that we may still obtain tractable results if we also bound the diameter of the $H$-free input graph. We continue this line of research by initiating a complexity study on the impact of bounding the diameter for a variety of classical vertex partitioning problems restricted to $H$-free graphs. We prove that bounding the diameter does not help for Independent Set, but leads to new tractable cases for problems closely related to 3-Colouring. That is, we show that Near-Bipartiteness, Independent Feedback Vertex Set, Independent Odd Cycle Transversal, Acyclic 3-Colouring and Star 3-Colouring are all polynomial-time solvable for chair-free graphs of bounded diameter. To obtain these results we exploit a new structural property of 3-colourable chair-free graphs.
In this short note, we show that for any $\epsilon >0$ and $k<n^{0.5-\epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $\Theta (n\log n)$.
Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).
Most existing works of polar codes focus on the analysis of block error probability. However, in many scenarios, bit error probability is also important for evaluating the performance of channel codes. In this paper, we establish a new framework to analyze the bit error probability of polar codes. Specifically, by revisiting the error event of bit-channel, we first introduce the conditional bit error probability as a metric to evaluate the reliability of bit-channel for both systematic and non-systematic polar codes. Guided by the concept of polar subcode, we then derive an upper bound on the conditional bit error probability of each bit-channel, and accordingly, an upper bound on the bit error probability of polar codes. Based on these, two types of construction metrics aiming at minimizing the bit error probability of polar codes are proposed, which are of linear computational complexity and explicit forms. Simulation results show that the polar codes constructed by the proposed methods can outperform those constructed by the conventional methods.