Artificial intelligence is creating one of the biggest revolution across technology driven application fields. For the finance sector, it offers many opportunities for significant market innovation and yet broad adoption of AI systems heavily relies on our trust in their outputs. Trust in technology is enabled by understanding the rationale behind the predictions made. To this end, the concept of eXplainable AI emerged introducing a suite of techniques attempting to explain to users how complex models arrived at a certain decision. For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings, but these techniques generally cannot cope well with longitudinal data (time series) in the presence of dependence structure and non-stationarity. We here propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.
Over the past decade explainable artificial intelligence has evolved from a predominantly technical discipline into a field that is deeply intertwined with social sciences. Insights such as human preference for contrastive -- more precisely, counterfactual -- explanations have played a major role in this transition, inspiring and guiding the research in computer science. Other observations, while equally important, have received much less attention. The desire of human explainees to communicate with artificial intelligence explainers through a dialogue-like interaction has been mostly neglected by the community. This poses many challenges for the effectiveness and widespread adoption of such technologies as delivering a single explanation optimised according to some predefined objectives may fail to engender understanding in its recipients and satisfy their unique needs given the diversity of human knowledge and intention. Using insights elaborated by Niklas Luhmann and, more recently, Elena Esposito we apply social systems theory to highlight challenges in explainable artificial intelligence and offer a path forward, striving to reinvigorate the technical research in this direction. This paper aims to demonstrate the potential of systems theoretical approaches to communication in understanding problems and limitations of explainable artificial intelligence.
When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made in real-time. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed, data-intensive AI decision-making beyond designers' and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black-box AI decision-making process. This paper surveys the application of XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for 6G in the near future.
The increasing complexity of AI systems has led to the growth of the field of explainable AI (XAI), which aims to provide explanations and justifications for the outputs of AI algorithms. These methods mainly focus on feature importance and identifying changes that can be made to achieve a desired outcome. Researchers have identified desired properties for XAI methods, such as plausibility, sparsity, causality, low run-time, etc. The objective of this study is to conduct a review of existing XAI research and present a classification of XAI methods. The study also aims to connect XAI users with the appropriate method and relate desired properties to current XAI approaches. The outcome of this study will be a clear strategy that outlines how to choose the right XAI method for a particular goal and user and provide a personalized explanation for users.
EXplainable Artificial Intelligence (XAI) is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the subject, yet XAI still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the combination of evidence stemming from the model and its input-output mapping, and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's inner workings and decision-making process) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are operationalized and it provides new insight into common explanation methods that we analyze as case studies.
Deep learning (DL) has emerged as a promising tool to downscale climate projections at regional-to-local scales from large-scale atmospheric fields following the perfect-prognosis (PP) approach. Given their complexity, it is crucial to properly evaluate these methods, especially when applied to changing climatic conditions where the ability to extrapolate/generalise is key. In this work, we intercompare several DL models extracted from the literature for the same challenging use-case (downscaling temperature in the CORDEX North America domain) and expand standard evaluation methods building on eXplainable artifical intelligence (XAI) techniques. We show how these techniques can be used to unravel the internal behaviour of these models, providing new evaluation dimensions and aiding in their diagnostic and design. These results show the usefulness of incorporating XAI techniques into statistical downscaling evaluation frameworks, especially when working with large regions and/or under climate change conditions.
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.