亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Toxicity detection algorithms, originally designed with reactive content moderation in mind, are increasingly being deployed into proactive end-user interventions to moderate content. Through a socio-technical lens and focusing on contexts in which they are applied, we explore the use of these algorithms in proactive moderation systems. Placing a toxicity detection algorithm in an imagined virtual mobile keyboard, we critically explore how such algorithms could be used to proactively reduce the sending of toxic content. We present findings from design workshops conducted with four distinct stakeholder groups and find concerns around how contextual complexities may exasperate inequalities around content moderation processes. Whilst only specific user groups are likely to directly benefit from these interventions, we highlight the potential for other groups to misuse them to circumvent detection, validate and gamify hate, and manipulate algorithmic models to exasperate harm.

相關內容

In the rapidly evolving field of natural language processing, the translation of linguistic descriptions into mathematical formulation of optimization problems presents a formidable challenge, demanding intricate understanding and processing capabilities from Large Language Models (LLMs). This study compares prominent LLMs, including GPT-3.5, GPT-4, and Llama-2-7b, in zero-shot and one-shot settings for this task. Our findings show GPT-4's superior performance, particularly in the one-shot scenario. A central part of this research is the introduction of `LM4OPT,' a progressive fine-tuning framework for Llama-2-7b that utilizes noisy embeddings and specialized datasets. However, this research highlights a notable gap in the contextual understanding capabilities of smaller models such as Llama-2-7b compared to larger counterparts, especially in processing lengthy and complex input contexts. Our empirical investigation, utilizing the NL4Opt dataset, unveils that GPT-4 surpasses the baseline performance established by previous research, achieving an F1-score of 0.63, solely based on the problem description in natural language, and without relying on any additional named entity information. GPT-3.5 follows closely, both outperforming the fine-tuned Llama-2-7b. These findings not only benchmark the current capabilities of LLMs in a novel application area but also lay the groundwork for future improvements in mathematical formulation of optimization problems from natural language input.

As cyber attacks continue to increase in frequency and sophistication, detecting malware has become a critical task for maintaining the security of computer systems. Traditional signature-based methods of malware detection have limitations in detecting complex and evolving threats. In recent years, machine learning (ML) has emerged as a promising solution to detect malware effectively. ML algorithms are capable of analyzing large datasets and identifying patterns that are difficult for humans to identify. This paper presents a comprehensive review of the state-of-the-art ML techniques used in malware detection, including supervised and unsupervised learning, deep learning, and reinforcement learning. We also examine the challenges and limitations of ML-based malware detection, such as the potential for adversarial attacks and the need for large amounts of labeled data. Furthermore, we discuss future directions in ML-based malware detection, including the integration of multiple ML algorithms and the use of explainable AI techniques to enhance the interpret ability of ML-based detection systems. Our research highlights the potential of ML-based techniques to improve the speed and accuracy of malware detection, and contribute to enhancing cybersecurity

Several approaches have recently used automated techniques to generate architecture design alternatives by means of optimization techniques. These approaches aim at improving an initial architecture with respect to quality aspects, such as performance, reliability, or maintainability. In this context, each optimization experiment usually produces a different set of architecture alternatives that is characterized by specific settings. As a consequence, the designer is left with the task of comparing such sets to identify the settings that lead to better solution sets for the problem. To assess the quality of solution sets, multi-objective optimization commonly relies on quality indicators. Among these, the quality indicator for the maximum spread estimates the diversity of the generated alternatives, providing a measure of how much of the solution space has been explored. However, the maximum spread indicator is computed only on the objective space and does not consider architectural information (e.g., components structure, design decisions) from the architectural space. In this paper, we propose a quality indicator for the spread that assesses the diversity of alternatives by taking into account architectural features. To compute the spread, we rely on a notion of distance between alternatives according to the way they were generated during the optimization. We demonstrate how our architectural quality indicator can be applied to a dataset from the literature.

Dense subgraph extraction is a fundamental problem in graph analysis and data mining, aimed at identifying cohesive and densely connected substructures within a given graph. It plays a crucial role in various domains, including social network analysis, biological network analysis, recommendation systems, and community detection. However, extracting a subgraph with the highest node similarity is a lack of exploration. To address this problem, we studied the Member Selection Problem and extended it with a dynamic constraint variant. By incorporating dynamic constraints, our algorithm can adapt to changing conditions or requirements, allowing for more flexible and personalized subgraph extraction. This approach enables the algorithm to provide tailored solutions that meet specific needs, even in scenarios where constraints may vary over time. We also provide the theoretical analysis to show that our algorithm is 1/3-approximation. Eventually, the experiments show that our algorithm is effective and efficient in tackling the member selection problem with dynamic constraints.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司