亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruction, scene understanding and condition assessment. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks has yielded approaches that succeed in achieving realistic depth synthesis out of a simple RGB modality. Most of these models are based on paired RGB-depth data and/or the availability of video sequences and stereo images. The lack of sequences, stereo data and RGB-depth pairs makes depth estimation a fully unsupervised single-image transfer problem that has barely been explored so far. This study builds on recent advances in the field of generative neural networks in order to establish fully unsupervised single-shot depth estimation. Two generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance, a novel perceptual reconstruction term and hand-crafted image filters. We comprehensively evaluate the models using industrial surface depth data as well as the Texas 3D Face Recognition Database, the CelebAMask-HQ database of human portraits and the SURREAL dataset that records body depth. For each evaluation dataset the proposed method shows a significant increase in depth accuracy compared to state-of-the-art single-image transfer methods.

相關內容

While the keypoint-based maps created by sparse monocular simultaneous localisation and mapping (SLAM) systems are useful for camera tracking, dense 3D reconstructions may be desired for many robotic tasks. Solutions involving depth cameras are limited in range and to indoor spaces, and dense reconstruction systems based on minimising the photometric error between frames are typically poorly constrained and suffer from scale ambiguity. To address these issues, we propose a 3D reconstruction system that leverages the output of a convolutional neural network (CNN) to produce fully dense depth maps for keyframes that include metric scale. Our system, DeepFusion, is capable of producing real-time dense reconstructions on a GPU. It fuses the output of a semi-dense multiview stereo algorithm with the depth and gradient predictions of a CNN in a probabilistic fashion, using learned uncertainties produced by the network. While the network only needs to be run once per keyframe, we are able to optimise for the depth map with each new frame so as to constantly make use of new geometric constraints. Based on its performance on synthetic and real-world datasets, we demonstrate that DeepFusion is capable of performing at least as well as other comparable systems.

Retinal Optical Coherence Tomography Angiography (OCTA) with high-resolution is important for the quantification and analysis of retinal vasculature. However, the resolution of OCTA images is inversely proportional to the field of view at the same sampling frequency, which is not conducive to clinicians for analyzing larger vascular areas. In this paper, we propose a novel Sparse-based domain Adaptation Super-Resolution network (SASR) for the reconstruction of realistic 6x6 mm2/low-resolution (LR) OCTA images to high-resolution (HR) representations. To be more specific, we first perform a simple degradation of the 3x3 mm2/high-resolution (HR) image to obtain the synthetic LR image. An efficient registration method is then employed to register the synthetic LR with its corresponding 3x3 mm2 image region within the 6x6 mm2 image to obtain the cropped realistic LR image. We then propose a multi-level super-resolution model for the fully-supervised reconstruction of the synthetic data, guiding the reconstruction of the realistic LR images through a generative-adversarial strategy that allows the synthetic and realistic LR images to be unified in the feature domain. Finally, a novel sparse edge-aware loss is designed to dynamically optimize the vessel edge structure. Extensive experiments on two OCTA sets have shown that our method performs better than state-of-the-art super-resolution reconstruction methods. In addition, we have investigated the performance of the reconstruction results on retina structure segmentations, which further validate the effectiveness of our approach.

This paper studies category-level object pose estimation based on a single monocular image. Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis. The idea is to sequentially update a set of latent variables, e.g., pose, shape, and appearance, of the generative model until the generated image best agrees with the observation. However, convergence and efficiency are two challenges of this inference procedure. In this paper, we take a deeper look at the inference of analysis-by-synthesis from the perspective of visual navigation, and investigate what is a good navigation policy for this specific task. We evaluate three different strategies, including gradient descent, reinforcement learning and imitation learning, via thorough comparisons in terms of convergence, robustness and efficiency. Moreover, we show that a simple hybrid approach leads to an effective and efficient solution. We further compare these strategies to state-of-the-art methods, and demonstrate superior performance on synthetic and real-world datasets leveraging off-the-shelf pose-aware generative models.

Most prior works in perceiving 3D humans from images reason human in isolation without their surroundings. However, humans are constantly interacting with the surrounding objects, thus calling for models that can reason about not only the human but also the object and their interaction. The problem is extremely challenging due to heavy occlusions between humans and objects, diverse interaction types and depth ambiguity. In this paper, we introduce CHORE, a novel method that learns to jointly reconstruct the human and the object from a single RGB image. CHORE takes inspiration from recent advances in implicit surface learning and classical model-based fitting. We compute a neural reconstruction of human and object represented implicitly with two unsigned distance fields, a correspondence field to a parametric body and an object pose field. This allows us to robustly fit a parametric body model and a 3D object template, while reasoning about interactions. Furthermore, prior pixel-aligned implicit learning methods use synthetic data and make assumptions that are not met in the real data. We propose a elegant depth-aware scaling that allows more efficient shape learning on real data. Experiments show that our joint reconstruction learned with the proposed strategy significantly outperforms the SOTA. Our code and models are available at //virtualhumans.mpi-inf.mpg.de/chore

The recent state of the art on monocular 3D face reconstruction from image data has made some impressive advancements, thanks to the advent of Deep Learning. However, it has mostly focused on input coming from a single RGB image, overlooking the following important factors: a) Nowadays, the vast majority of facial image data of interest do not originate from single images but rather from videos, which contain rich dynamic information. b) Furthermore, these videos typically capture individuals in some form of verbal communication (public talks, teleconferences, audiovisual human-computer interactions, interviews, monologues/dialogues in movies, etc). When existing 3D face reconstruction methods are applied in such videos, the artifacts in the reconstruction of the shape and motion of the mouth area are often severe, since they do not match well with the speech audio. To overcome the aforementioned limitations, we present the first method for visual speech-aware perceptual reconstruction of 3D mouth expressions. We do this by proposing a "lipread" loss, which guides the fitting process so that the elicited perception from the 3D reconstructed talking head resembles that of the original video footage. We demonstrate that, interestingly, the lipread loss is better suited for 3D reconstruction of mouth movements compared to traditional landmark losses, and even direct 3D supervision. Furthermore, the devised method does not rely on any text transcriptions or corresponding audio, rendering it ideal for training in unlabeled datasets. We verify the efficiency of our method through exhaustive objective evaluations on three large-scale datasets, as well as subjective evaluation with two web-based user studies.

Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems. However, applying them to autonomous 3D reconstruction, where robots are required to explore a scene and plan a view path for the reconstruction, has not been studied. In this paper, we explore for the first time the possibility of using implicit neural representations for autonomous 3D scene reconstruction by addressing two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one. For the first challenge, a proxy of Peak Signal-to-Noise Ratio (PSNR) is proposed to quantify a viewpoint quality. The proxy is acquired by treating the color of a spatial point in a scene as a random variable under a Gaussian distribution rather than a deterministic one; the variance of the distribution quantifies the uncertainty of the reconstruction and composes the proxy. For the second challenge, the proxy is optimized jointly with the parameters of an implicit neural network for the scene. With the proposed view quality criterion, we can then apply the new representations to autonomous 3D reconstruction. Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.

Deep learning-based image reconstruction approaches have demonstrated impressive empirical performance in many imaging modalities. These approaches usually require a large amount of high-quality paired training data, which is often not available in medical imaging. To circumvent this issue we develop a novel unsupervised knowledge-transfer paradigm for learned reconstruction within a Bayesian framework. The proposed approach learns a reconstruction network in two phases. The first phase trains a reconstruction network with a set of ordered pairs comprising of ground truth images of ellipses and the corresponding simulated measurement data. The second phase fine-tunes the pretrained network to more realistic measurement data without supervision. By construction, the framework is capable of delivering predictive uncertainty information over the reconstructed image. We present extensive experimental results on low-dose and sparse-view computed tomography showing that the approach is competitive with several state-of-the-art supervised and unsupervised reconstruction techniques. Moreover, for test data distributed differently from the training data, the proposed framework can significantly improve reconstruction quality not only visually, but also quantitatively in terms of PSNR and SSIM, when compared with learned methods trained on the synthetic dataset only.

Event cameras are bio-inspired sensors that offer advantages over traditional cameras. They work asynchronously, sampling the scene with microsecond resolution and producing a stream of brightness changes. This unconventional output has sparked novel computer vision methods to unlock the camera's potential. We tackle the problem of event-based stereo 3D reconstruction for SLAM. Most event-based stereo methods try to exploit the camera's high temporal resolution and event simultaneity across cameras to establish matches and estimate depth. By contrast, we investigate how to estimate depth without explicit data association by fusing Disparity Space Images (DSIs) originated in efficient monocular methods. We develop fusion theory and apply it to design multi-camera 3D reconstruction algorithms that produce state-of-the-art results, as we confirm by comparing against four baseline methods and testing on a variety of available datasets.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

北京阿比特科技有限公司