亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography (CT). As the (na\"{\i}ve) solution does not depend on the measured data continuously, regularization is needed to re-establish a continuous dependence. In this work, we investigate simple, but yet still provably convergent approaches to learning linear regularization methods from data. More specifically, we analyze two approaches: One generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of [1], and one tailored approach in the Fourier domain that is specific to CT-reconstruction. We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on. Finally, we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically, discuss their advantages and disadvantages and investigate the effect of discretization errors at different resolutions.

相關內容

Recently, prompt-based learning has become a very popular solution in many Natural Language Processing (NLP) tasks by inserting a template into model input, which converts the task into a cloze-style one to smoothing out differences between the Pre-trained Language Model (PLM) and the current task. But in the case of relation classification, it is difficult to map the masked output to the relation labels because of its abundant semantic information, e.g. org:founded_by''. Therefore, a pre-trained model still needs enough labelled data to fit the relations. To mitigate this challenge, in this paper, we present a novel prompt-based learning method, namely LabelPrompt, for the relation classification task. It is an extraordinary intuitive approach by a motivation: ``GIVE MODEL CHOICES!''. First, we define some additional tokens to represent the relation labels, which regards these tokens as the verbalizer with semantic initialisation and constructs them with a prompt template method. Then we revisit the inconsistency of the predicted relation and the given entities, an entity-aware module with the thought of contrastive learning is designed to mitigate the problem. At last, we apply an attention query strategy to self-attention layers to resolve two types of tokens, prompt tokens and sequence tokens. The proposed strategy effectively improves the adaptation capability of prompt-based learning in the relation classification task when only a small labelled data is available. Extensive experimental results obtained on several bench-marking datasets demonstrate the superiority of the proposed LabelPrompt method, particularly in the few-shot scenario.

Stokes flow equations have been implemented successfully in practice for simulating problems with moving interfaces. Though computational methods produce accurate solutions and numerical convergence can be demonstrated using a resolution study, the rigorous convergence proofs are usually limited to particular reformulations and boundary conditions. In this paper, a rigorous error analysis of the marker and cell (MAC) scheme for Stokes interface problems with constant viscosity in the framework of the finite difference method is presented. Without reformulating the problem into elliptic PDEs, the main idea is to use a discrete Ladyzenskaja-Babuska-Brezzi (LBB) condition and construct auxiliary functions, which satisfy discretized Stokes equations and possess at least second order accuracy in the neighborhood of the moving interface. In particular, the method, for the first time, enables one to prove second order convergence of the velocity gradient in the discrete $\ell^2$-norm, in addition to the velocity and pressure fields. Numerical experiments verify the desired properties of the methods and the expected order of accuracy for both two-dimensional and three-dimensional examples.

Neural-symbolic approaches have recently gained popularity to inject prior knowledge into a learner without requiring it to induce this knowledge from data. These approaches can potentially learn competitive solutions with a significant reduction of the amount of supervised data. A large class of neural-symbolic approaches is based on First-Order Logic to represent prior knowledge, relaxed to a differentiable form using fuzzy logic. This paper shows that the loss function expressing these neural-symbolic learning tasks can be unambiguously determined given the selection of a t-norm generator. When restricted to supervised learning, the presented theoretical apparatus provides a clean justification to the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. However, the proposed learning formulation extends the advantages of the cross-entropy loss to the general knowledge that can be represented by a neural-symbolic method. Therefore, the methodology allows the development of a novel class of loss functions, which are shown in the experimental results to lead to faster convergence rates than the approaches previously proposed in the literature.

Differentially private training offers a protection which is usually interpreted as a guarantee against membership inference attacks. By proxy, this guarantee extends to other threats like reconstruction attacks attempting to extract complete training examples. Recent works provide evidence that if one does not need to protect against membership attacks but instead only wants to protect against training data reconstruction, then utility of private models can be improved because less noise is required to protect against these more ambitious attacks. We investigate this further in the context of DP-SGD, a standard algorithm for private deep learning, and provide an upper bound on the success of any reconstruction attack against DP-SGD together with an attack that empirically matches the predictions of our bound. Together, these two results open the door to fine-grained investigations on how to set the privacy parameters of DP-SGD in practice to protect against reconstruction attacks. Finally, we use our methods to demonstrate that different settings of the DP-SGD parameters leading to the same DP guarantees can result in significantly different success rates for reconstruction, indicating that the DP guarantee alone might not be a good proxy for controlling the protection against reconstruction attacks.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司