Cellular-connected unmanned aerial vehicle (UAV) has attracted a surge of research interest in both academia and industry. To support aerial user equipment (UEs) in the existing cellular networks, one promising approach is to assign a portion of the system bandwidth exclusively to the UAV-UEs. This is especially favorable for use cases where a large number of UAV-UEs are exploited, e.g., for package delivery close to a warehouse. Although the nearly line-of-sight (LoS) channels can result in higher powers received, UAVs can in turn cause severe interference to each other in the same frequency band. In this contribution, we focus on the uplink communications of massive cellular-connected UAVs. Different power allocation algorithms are proposed to either maximize the minimal spectrum efficiency (SE) or maximize the overall SE to cope with severe interference based on the successive convex approximation (SCA) principle. One of the challenges is that a UAV can affect a large area meaning that many more UAV-UEs must be considered in the optimization problem, which is essentially different from that for terrestrial UEs. The necessity of single-carrier uplink transmission further complicates the problem. Nevertheless, we find that the special property of large coherent bandwidths and coherent times of the propagation channels can be leveraged. The performances of the proposed algorithms are evaluated via extensive simulations in the full-buffer transmission mode and bursty-traffic mode. Results show that the proposed algorithms can effectively enhance the uplink SEs. This work can be considered the first attempt to deal with the interference among massive cellular-connected UAV-UEs with optimized power allocations.
In this paper, different generations of mobile communication have been concisely mentioned. The need for advanced antenna systems capable of sending and receiving massive data is felt in the fifth generation of mobile communication. The beamforming method and multi-input multi-output systems (MIMO) are the proposed solutions to increase the channel capacity of the communication network. Orbital angular momentum (OAM), an inherent feature of electromagnetic waves, is a suitable solution to increase channel capacity. This feature will increase the channel capacity by producing orthogonal modes. Using antenna arrays is an effective way to produce these modes. The results of FEKO simulations show the capability of this method.
Given a dataset on actions and resulting long-term rewards, a direct estimation approach fits value functions that minimize prediction error on the training data. Temporal difference learning (TD) methods instead fit value functions by minimizing the degree of temporal inconsistency between estimates made at successive time-steps. Focusing on finite state Markov chains, we provide a crisp asymptotic theory of the statistical advantages of this approach. First, we show that an intuitive inverse trajectory pooling coefficient completely characterizes the percent reduction in mean-squared error of value estimates. Depending on problem structure, the reduction could be enormous or nonexistent. Next, we prove that there can be dramatic improvements in estimates of the difference in value-to-go for two states: TD's errors are bounded in terms of a novel measure - the problem's trajectory crossing time - which can be much smaller than the problem's time horizon.
In this work we analyse and demonstrate the coexistence of digital coherent and analogue radio over fibre signals over an access-metro transmission network and field fibre. We analyse how the spectral proximity of the two signals and the non-ideal filter alignment of typical telecomms-grade ROADMs affect the signal performance. Our results show that coexistence is indeed possible, although performance deteriorates with the increase in number of ROADMs in the network topology. Thus, while todays access-metro networks will be able to support future 5.5 and 6G cell densification operating at mmWave and THz frequency, using spectral efficient analogue radio over fibre transmission, there will be trade-offs to be considered. In our experiment setup, we show that the limit for ARoF accessible performance is reached after transmission over 3 ROADMs and a total of 49 km of fibre.
An application of stereo thermal vision to perform preliminary inspection operations of electrical power lines by a particular class of small Unmanned Aerial Vehicles (UAVs), aka Micro Unmanned Aerial Vehicles (MAVs), is presented in this paper. The proposed hardware and software setup allows the detection of overheated power equipment, one of the major causes of power outages. The stereo vision complements the GPS information by finely detecting the potential source of damage while also providing a measure of the harm extension. The reduced sizes and the light weight of the vehicle enable to survey areas otherwise difficult to access with standard UAVs. Gazebo simulations and real flight experiments demonstrate the feasibility and effectiveness of the proposed setup.
A framework for computing feasible and constrained trajectories for a fleet of quad-rotors leveraging on Signal Temporal Logic (STL) specifications for power line inspection tasks is proposed in this paper. The planner allows the formulation of complex missions that avoid obstacles and maintain a safe distance between drones while performing the planned mission. An optimization problem is set to generate optimal strategies that satisfy these specifications and also take vehicle constraints into account. Further, an event-triggered replanner is proposed to reply to unforeseen events and external disturbances. An energy minimization term is also considered to implicitly save quad-rotors battery life while carrying out the mission. Numerical simulations in MATLAB and experimental results show the validity and the effectiveness of the proposed approach, and demonstrate its applicability in real-world scenarios.
In many complex systems, whether biological or artificial, the thermodynamic costs of communication among their components are large. These systems also tend to split information transmitted between any two components across multiple channels. A common hypothesis is that such inverse multiplexing strategies reduce total thermodynamic costs. So far, however, there have been no physics-based results supporting this hypothesis. This gap existed partially because we have lacked a theoretical framework that addresses the interplay of thermodynamics and information in off-equilibrium systems at any spatiotemporal scale. Here we present the first study that rigorously combines such a framework, stochastic thermodynamics, with Shannon information theory. We develop a minimal model that captures the fundamental features common to a wide variety of communication systems. We find that the thermodynamic cost in this model is a convex function of the channel capacity, the canonical measure of the communication capability of a channel. We also find that this function is not always monotonic, in contrast to previous results not derived from first principles physics. These results clarify when and how to split a single communication stream across multiple channels. In particular, we present Pareto fronts that reveal the trade-off between thermodynamic costs and channel capacity when inverse multiplexing. Due to the generality of our model, our findings could help explain empirical observations of how thermodynamic costs of information transmission make inverse multiplexing energetically favorable in many real-world communication systems.
Intelligent reflecting surfaces (IRSs) have emerged as a promising wireless technology for the dynamic configuration and control of electromagnetic waves, thus creating a smart (programmable) radio environment. In this context, we study a multi-IRS assisted two-way communication system consisting of two users that employ full-duplex (FD) technology. More specifically, we deal with the joint IRS location and size (i.e., the number of reflecting elements) optimization in order to minimize an upper bound of system outage probability under various constraints: minimum and maximum number of reflecting elements per IRS, maximum number of installed IRSs, maximum total number of reflecting elements (implicit bound on the signaling overhead) as well as maximum total IRS installation cost. First, the problem is formulated as a discrete optimization problem and, then, a theoretical proof of its NP-hardness is given. Moreover, we provide a lower bound on the optimum value by solving a linear-programming relaxation (LPR) problem. Subsequently, we design two polynomial-time algorithms, a deterministic greedy algorithm and a randomized approximation algorithm, based on the LPR solution. The former is a heuristic method that always computes a feasible solution for which (a posteriori) performance guarantee can be provided. The latter achieves an approximate solution, using randomized rounding, with provable (a priori) probabilistic guarantees on the performance. Furthermore, extensive numerical simulations demonstrate the superiority of the proposed algorithms compared to the baseline schemes. Finally, useful conclusions regarding the comparison between FD and conventional half-duplex (HD) systems are also drawn.
Covert communication is focused on hiding the mere existence of communication from unwanted listeners via the physical layer. In this work, we consider the problem of perfect covert communication in wireless networks. Specifically, harnessing an Intelligent Reflecting Surface (IRS), we turn our attention to schemes which allow the transmitter to completely hide the communication, with zero energy at the unwanted listener (Willie) and hence zero probability of detection. Applications of such schemes go beyond simple covertness, as we prevent detectability or decoding even when the codebook, timings and channel characteristics are known to Willie. That is, perfect covertness also ensures Willie is unable to decode, even assuming communication took place and knowing the codebook. We define perfect covertness, give a necessary and sufficient condition for it in IRS-assisted communication and define the optimization problem. For N = 2 IRS elements, we analyze the probability of finding a solution and derive its closed-form. We then investigate the problem of N > 2 IRS elements, by analyzing probability of such a zero-detection solution. We prove that this probability converge to 1 as the number of IRS tends to infinity. We provide an iterative algorithm to find a perfectly covert scheme and prove its convergence. The results are also supported by simulations, showing that a small amount of IRS elements allows for a positive rate at the legitimate user yet with zero probability of detection at an unwanted listener.
Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.