亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Domination problems in general can capture situations in which some entities have an effect on other entities (and sometimes on themselves). The usual goal is to select a minimum number of entities that can influence a target group of entities or to influence a maximum number of target entities with a certain number of available influencers. In this work, we focus on the distinction between \textit{internal} and \textit{external} domination in the respective maximization problem. In particular, a dominator can dominate its entire neighborhood in a graph, internally dominating itself, while those of its neighbors which are not dominators themselves are externally dominated. We study the problem of maximizing the external domination that a given number of dominators can yield and we present a 0.5307-approximation algorithm for this problem. Moreover, our methods provide a framework for approximating a number of problems that can be cast in terms of external domination. In particular, we observe that an interesting interpretation of the maximum coverage problem can capture a new problem in elections, in which we want to maximize the number of \textit{externally represented} voters. We study this problem in two different settings, namely Non-Secrecy and Rational-Candidate, and provide approximability analysis for two alternative approaches; our analysis reveals, among other contributions, that an earlier resource allocation algorithm is, in fact, a 0.462-approximation algorithm for maximum external domination in directed graphs.

相關內容

We study dynamic algorithms in the model of algorithms with predictions. We assume the algorithm is given imperfect predictions regarding future updates, and we ask how such predictions can be used to improve the running time. This can be seen as a model interpolating between classic online and offline dynamic algorithms. Our results give smooth tradeoffs between these two extreme settings. First, we give algorithms for incremental and decremental transitive closure and approximate APSP that take as an additional input a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in $\tilde{O}(n^{(3+\omega)/2})$ time, and then handle updates in $\tilde{O}(1)$ worst-case time and queries in $\tilde{O}(\eta^2)$ worst-case time. Here $\eta$ is an error measure that can be bounded by the maximum difference between the predicted and actual insertion (deletion) time of an edge, i.e., by the $\ell_\infty$-error of the predictions. The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has access to a predicted sequence of the next $n$ updates. We show how to solve fully dynamic triangle detection, maximum matching, single-source reachability, and more, in $O(n^{\omega-1}+n\eta_i)$ worst-case update time. Here $\eta_i$ denotes how much earlier the $i$-th update occurs than predicted. Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion. As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in $\tilde{O}(n^2)$ worst-case vertex insertion time and $\tilde{O}(n^2 (1+\eta_i))$ worst-case vertex deletion time (for the prediction error $\eta_i$ defined as above).

We investigate a fundamental vertex-deletion problem called (Induced) Subgraph Hitting: given a graph $G$ and a set $\mathcal{F}$ of forbidden graphs, the goal is to compute a minimum-sized set $S$ of vertices of $G$ such that $G-S$ does not contain any graph in $\mathcal{F}$ as an (induced) subgraph. This is a generic problem that encompasses many well-known problems that were extensively studied on their own, particularly (but not only) from the perspectives of both approximation and parameterization. In this paper, we study the approximability of the problem on a large variety of graph classes. Our first result is a linear-time $(1+\varepsilon)$-approximation reduction from (Induced) Subgraph Hitting on any graph class $\mathcal{G}$ of bounded expansion to the same problem on bounded degree graphs within $\mathcal{G}$. This directly yields linear-size $(1+\varepsilon)$-approximation lossy kernels for the problems on any bounded-expansion graph classes. Our second result is a linear-time approximation scheme for (Induced) Subgraph Hitting on any graph class $\mathcal{G}$ of polynomial expansion, based on the local-search framework of Har-Peled and Quanrud [SICOMP 2017]. This approximation scheme can be applied to a more general family of problems that aim to hit all subgraphs satisfying a certain property $\pi$ that is efficiently testable and has bounded diameter. Both of our results have applications to Subgraph Hitting (not induced) on wide classes of geometric intersection graphs, resulting in linear-size lossy kernels and (near-)linear time approximation schemes for the problem.

Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring scenario. Motivated by this, we initiate a systematic algorithmic study of a \emph{fair} version of \textsc{Hitting Set}. In the classical \textsc{Hitting Set} problem, the input is a universe $\mathcal{U}$, a family $\mathcal{F}$ of subsets of $\mathcal{U}$, and a non-negative integer $k$. The goal is to determine whether there exists a subset $S \subseteq \mathcal{U}$ of size $k$ that \emph{hits} (i.e., intersects) every set in $\mathcal{F}$. Inspired by several recent works, we formulate a fair version of this problem, as follows. The input additionally contains a family $\mathcal{B}$ of subsets of $\mathcal{U}$, where each subset in $\mathcal{B}$ can be thought of as the group of elements of the same \emph{type}. We want to find a set $S \subseteq \mathcal{U}$ of size $k$ that (i) hits all sets of $\mathcal{F}$, and (ii) does not contain \emph{too many} elements of each type. We call this problem \textsc{Fair Hitting Set}, and chart out its tractability boundary from both classical as well as multivariate perspective. Our results use a multitude of techniques from parameterized complexity including classical to advanced tools, such as, methods of representative sets for matroids, FO model checking, and a generalization of best known kernels for \textsc{Hitting Set}.

In this paper, we show that in a parallel processing system, if a partial order is induced among the local states visited by a node, then synchronization cost can be eliminated. As a result of this partial order, a DAG is induced among the global states. Specifically, we show that in such systems, correctness is preserved even if the nodes execute asynchronously and read old information of other nodes. We present two variations for inducing DAGs -- \textit{DAG-inducing problems}, where the problem definition itself induces a DAG, and \textit{DAG-inducing algorithms}, where a DAG is induced by the algorithm. We demonstrate that the dominant clique (DC) problem and shortest path (SP) problem are DAG-inducing problems. Among these, DC allows self-stabilization, whereas the algorithm that we present for SP does not. We demonstrate that maximal matching (MM) is not a DAG-inducing problem. However, a DAG-inducing algorithm can be developed for it. The algorithm for MM allows self-stabilization. This algorithm converges in $2n$ moves and does not require a synchronous environment, which is an improvement over the existing algorithms in the literature. The algorithm for DC converges in $2m$ moves, and the algorithm for SP converges in $\mathcal{D}$ rounds. ($n$ is the number of nodes and $m$ is the number of edges in the input graph, and $\mathcal{D}$ is its diameter.) We also note that DAG-inducing problems are more general than, and encapsulate, lattice linear problems (Garg, SPAA 2020). Similarly, DAG-inducing algorithms encapsulate lattice linear algorithms (Gupta and Kulkarni, SSS 2022). We also show that a partial order induced among the local states visited by a node, as discussed above, is a necessary and sufficient condition to allow asynchrony.

The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints. Our eventual goal is to handle supplier problems in the most general distributional setting, where there is only black-box access to the underlying distribution. To that end, we follow a two-step approach. First, we develop algorithms for a restricted version of each problem, where all scenarios are explicitly provided; second, we employ a novel scenario-discarding variant of the standard Sample Average Approximation (SAA) method, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary in order to optimize over the radius.

We study the fundamental problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her MMS value. An allocation is called MMS if all agents receive at least their MMS value. However, since MMS allocations need not exist when $n>2$, a series of works showed the existence of approximate MMS allocations with the current best factor of $\frac{3}{4} + O(\frac{1}{n})$. The recent work by Akrami et al. showed the limitations of existing approaches and proved that they cannot improve this factor to $3/4 + \Omega(1)$. In this paper, we bypass these barriers to show the existence of $(\frac{3}{4} + \frac{3}{3836})$-MMS allocations by developing new reduction rules and analysis techniques.

Given an undirected graph $G=(V,E)$, a vertex $v\in V$ is edge-vertex (ev) dominated by an edge $e\in E$ if $v$ is either incident to $e$ or incident to an adjacent edge of $e$. A set $S^{ev}\subseteq E$ is an edge-vertex dominating set (referred to as \textit{ev}-dominating set and in short as \textit{EVDS}) of $G$ if every vertex of $G$ is \textit{ev}-dominated by at least one edge of $S^{ev}$. The minimum cardinality of an \textit{ev}-dominating set is the \textit{ev}-domination number. The edge-vertex dominating set problem is to find a minimum \textit{ev}-domination number. In this paper, we prove that the \textit{ev}-dominating set problem is {\tt NP-hard} on unit disk graphs. We also prove that this problem admits a polynomial-time approximation scheme on unit disk graphs. Finally, we give a simple 5-factor linear-time approximation algorithm.

We consider a cooperative multi-agent system consisting of a team of agents with decentralized information. Our focus is on the design of symmetric (i.e. identical) strategies for the agents in order to optimize a finite horizon team objective. We start with a general information structure and then consider some special cases. The constraint of using symmetric strategies introduces new features and complications in the team problem. For example, we show in a simple example that randomized symmetric strategies may outperform deterministic symmetric strategies. We also discuss why some of the known approaches for reducing agents' private information in teams may not work under the constraint of symmetric strategies. We then adopt the common information approach for our problem and modify it to accommodate the use of symmetric strategies. This results in a common information based dynamic program where each step involves minimization over a single function from the space of an agent's private information to the space of probability distributions over actions. We present specialized models where private information can be reduced using simple dynamic program based arguments.

We introduce a new quantum algorithm for computing the Betti numbers of a simplicial complex. In contrast to previous quantum algorithms that work by estimating the eigenvalues of the combinatorial Laplacian, our algorithm is an instance of the generic Incremental Algorithm for computing Betti numbers that incrementally adds simplices to the simplicial complex and tests whether or not they create a cycle. In contrast to existing quantum algorithms for computing Betti numbers that work best when the complex has close to the maximal number of simplices, our algorithm works best for sparse complexes. To test whether a simplex creates a cycle, we introduce a quantum span-program algorithm. We show that the query complexity of our span program is parameterized by quantities called the effective resistance and effective capacitance of the boundary of the simplex. Unfortunately, we also prove upper and lower bounds on the effective resistance and capacitance, showing both quantities can be exponentially large with respect to the size of the complex, implying that our algorithm would have to run for exponential time to exactly compute Betti numbers. However, as a corollary to these bounds, we show that the spectral gap of the combinatorial Laplacian can be exponentially small. As the runtime of all previous quantum algorithms for computing Betti numbers are parameterized by the inverse of the spectral gap, our bounds show that all quantum algorithms for computing Betti numbers must run for exponentially long to exactly compute Betti numbers. Finally, we prove some novel formulas for effective resistance and effective capacitance to give intuition for these quantities.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

北京阿比特科技有限公司