Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{//github.com/nfq729/MT-CSD}.
Addressing real-world optimization problems becomes particularly challenging when analytic objective functions or constraints are unavailable. While numerous studies have addressed the issue of unknown objectives, limited research has focused on scenarios where feasibility constraints are not given explicitly. Overlooking these constraints can lead to spurious solutions that are unrealistic in practice. To deal with such unknown constraints, we propose to perform optimization within the data manifold using diffusion models. To constrain the optimization process to the data manifold, we reformulate the original optimization problem as a sampling problem from the product of the Boltzmann distribution defined by the objective function and the data distribution learned by the diffusion model. To enhance sampling efficiency, we propose a two-stage framework that begins with a guided diffusion process for warm-up, followed by a Langevin dynamics stage for further correction. Theoretical analysis shows that the initial stage results in a distribution focused on feasible solutions, thereby providing a better initialization for the later stage. Comprehensive experiments on a synthetic dataset, six real-world black-box optimization datasets, and a multi-objective optimization dataset show that our method achieves better or comparable performance with previous state-of-the-art baselines.
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
Planning for both immediate and long-term benefits becomes increasingly important in recommendation. Existing methods apply Reinforcement Learning (RL) to learn planning capacity by maximizing cumulative reward for long-term recommendation. However, the scarcity of recommendation data presents challenges such as instability and susceptibility to overfitting when training RL models from scratch, resulting in sub-optimal performance. In this light, we propose to leverage the remarkable planning capabilities over sparse data of Large Language Models (LLMs) for long-term recommendation. The key to achieving the target lies in formulating a guidance plan following principles of enhancing long-term engagement and grounding the plan to effective and executable actions in a personalized manner. To this end, we propose a Bi-level Learnable LLM Planner framework, which consists of a set of LLM instances and breaks down the learning process into macro-learning and micro-learning to learn macro-level guidance and micro-level personalized recommendation policies, respectively. Extensive experiments validate that the framework facilitates the planning ability of LLMs for long-term recommendation. Our code and data can be found at //github.com/jizhi-zhang/BiLLP.
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and explicit construction of extractors. In the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate $>2/3$ and $1-\gamma$ respectively by Li (FOCS' 23). We present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include two-source and affine non-malleable extractors (over $\mathsf{F}_2$) for sources on $n$ bits with min-entropy $k \ge \log^C n$ and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16), as well as those with min-entropy $k = O(\log n)$ and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) as a generalization of several well-studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different.\ Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.
Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.