亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider a learning problem among non-cooperative agents interacting in a time-varying system. Specifically, we focus on repeated linear quadratic network games, in which the network of interactions changes with time and agents may not be present at each iteration. To get tractability, we assume that at each iteration, the network of interactions is sampled from an underlying random network model and agents participate at random with a given probability. Under these assumptions, we consider a gradient-based learning algorithm and establish almost sure convergence of the agents' strategies to the Nash equilibrium of the game played over the expected network. Additionally, we prove, in the large population regime, that the learned strategy is an $\epsilon$-Nash equilibrium for each stage game with high probability. We validate our results over an online market application.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

To tackle long planning horizon problems in reinforcement learning with general function approximation, we propose the first algorithm, termed as UCRL-WVTR, that achieves both \emph{horizon-free} and \emph{instance-dependent}, since it eliminates the polynomial dependency on the planning horizon. The derived regret bound is deemed \emph{sharp}, as it matches the minimax lower bound when specialized to linear mixture MDPs up to logarithmic factors. Furthermore, UCRL-WVTR is \emph{computationally efficient} with access to a regression oracle. The achievement of such a horizon-free, instance-dependent, and sharp regret bound hinges upon (i) novel algorithm designs: weighted value-targeted regression and a high-order moment estimator in the context of general function approximation; and (ii) fine-grained analyses: a novel concentration bound of weighted non-linear least squares and a refined analysis which leads to the tight instance-dependent bound. We also conduct comprehensive experiments to corroborate our theoretical findings.

Discrete audio tokens derived from self-supervised learning models have gained widespread usage in speech generation. However, current practice of directly utilizing audio tokens poses challenges for sequence modeling due to the length of the token sequence. Additionally, this approach places the burden on the model to establish correlations between tokens, further complicating the modeling process. To address this issue, we propose acoustic BPE which encodes frequent audio token patterns by utilizing byte-pair encoding. Acoustic BPE effectively reduces the sequence length and leverages the prior morphological information present in token sequence, which alleviates the modeling challenges of token correlation. Through comprehensive investigations on a speech language model trained with acoustic BPE, we confirm the notable advantages it offers, including faster inference and improved syntax capturing capabilities. In addition, we propose a novel rescore method to select the optimal synthetic speech among multiple candidates generated by rich-diversity TTS system. Experiments prove that rescore selection aligns closely with human preference, which highlights acoustic BPE's potential to other speech generation tasks.

AI chips commonly employ SRAM memory as buffers for their reliability and speed, which contribute to high performance. However, SRAM is expensive and demands significant area and energy consumption. Previous studies have explored replacing SRAM with emerging technologies like non-volatile memory, which offers fast-read memory access and a small cell area. Despite these advantages, non-volatile memory's slow write memory access and high write energy consumption prevent it from surpassing SRAM performance in AI applications with extensive memory access requirements. Some research has also investigated eDRAM as an area-efficient on-chip memory with similar access times as SRAM. Still, refresh power remains a concern, leaving the trade-off between performance, area, and power consumption unresolved. To address this issue, our paper presents a novel mixed CMOS cell memory design that balances performance, area, and energy efficiency for AI memory by combining SRAM and eDRAM cells. We consider the proportion ratio of one SRAM and seven eDRAM cells in the memory to achieve area reduction using mixed CMOS cell memory. Additionally, we capitalize on the characteristics of DNN data representation and integrate asymmetric eDRAM cells to lower energy consumption. To validate our proposed MCAIMem solution, we conduct extensive simulations and benchmarking against traditional SRAM. Our results demonstrate that MCAIMem significantly outperforms these alternatives in terms of area and energy efficiency. Specifically, our MCAIMem can reduce the area by 48\% and energy consumption by 3.4$\times$ compared to SRAM designs, without incurring any accuracy loss.

"AI for science" is widely recognized as a future trend in the development of scientific research. Currently, although machine learning algorithms have played a crucial role in scientific research with numerous successful cases, relatively few instances exist where AI assists researchers in uncovering the underlying physical mechanisms behind a certain phenomenon and subsequently using that mechanism to improve machine learning algorithms' efficiency. This article uses the investigation into the relationship between extreme Poisson's ratio values and the structure of amorphous networks as a case study to illustrate how machine learning methods can assist in revealing underlying physical mechanisms. Upon recognizing that the Poisson's ratio relies on the low-frequency vibrational modes of dynamical matrix, we can then employ a convolutional neural network, trained on the dynamical matrix instead of traditional image recognition, to predict the Poisson's ratio of amorphous networks with a much higher efficiency. Through this example, we aim to showcase the role that artificial intelligence can play in revealing fundamental physical mechanisms, which subsequently improves the machine learning algorithms significantly.

In this paper, we use graph-based techniques to investigate the use of geometric deep learning (GDL) in the classification and down-selection of aircraft thermal management systems (TMS). Previous work developed an enumerative graph generation procedure using a component catalog with network structure constraints to represent novel aircraft TMSs as graphs. However, as with many enumerative approaches, combinatorial explosion limits its efficacy in many real-world problems, particularly when simulations and optimization must be performed on the many (automatically-generated) physics models. Therefore, we present an approach that takes the directed graphs representing aircraft TMSs and use GDL to predict the critical characteristics of the remaining graphs. This paper's findings demonstrate that incorporating additional graph-based features enhances performance, achieving an accuracy of 97% for determining a graph's compilability and simulatability while using only 5% of the data for training. By applying iterative classification methods, we also successfully segmented the total set of graphs into more specific groups with an average inclusion of 84.7 of the top 100 highest-performing graphs, achieved by training on 45% of the data.

Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks. However, the IDSs for IoT devices face inherent challenges of IoT systems, including the heterogeneity of IoT data/devices, the high dimensionality of training data, and the imbalanced data. Moreover, the deployment of IDSs on IoT systems is challenging, and sometimes impossible, due to the limited resources such as memory/storage and computing capability of typical IoT devices. To tackle these challenges, this article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE) that can feed classifiers of IDSs with more separable/distinguishable and lower-dimensional representation data. Additionally, in comparison to the state-of-the-art neural networks used in IDSs, CTVAE requires less memory/storage and computing power, hence making it more suitable for IoT IDS systems. Extensive experiments with the 11 most popular IoT botnet datasets show that CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods, whilst the running time for attack detection is lower than 2E-6 seconds and the model size is lower than 1 MB. We also further investigate various characteristics of CTVAE in the latent space and in the reconstruction representation to demonstrate its efficacy compared with current well-known methods.

Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司