亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video anomaly detection under weak supervision presents significant challenges, particularly due to the lack of frame-level annotations during training. While prior research has utilized graph convolution networks and self-attention mechanisms alongside multiple instance learning (MIL)-based classification loss to model temporal relations and learn discriminative features, these methods often employ multi-branch architectures to capture local and global dependencies separately, resulting in increased parameters and computational costs. Moreover, the coarse-grained interclass separability provided by the binary constraint of MIL-based loss neglects the fine-grained discriminability within anomalous classes. In response, this paper introduces a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability. We present a Temporal Context Aggregation (TCA) module that captures comprehensive contextual information by reusing the similarity matrix and implementing adaptive fusion. Additionally, we propose a Prompt-Enhanced Learning (PEL) module that integrates semantic priors using knowledge-based prompts to boost the discriminative capacity of context features while ensuring separability between anomaly sub-classes. Extensive experiments validate the effectiveness of our method's components, demonstrating competitive performance with reduced parameters and computational effort on three challenging benchmarks: UCF-Crime, XD-Violence, and ShanghaiTech datasets. Notably, our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy. Our code is available at: //github.com/yujiangpu20/PEL4VAD.

相關內容

Real-world sequential decision making is characterized by sparse rewards and large decision spaces, posing significant difficulty for experiential learning systems like $\textit{tabula rasa}$ reinforcement learning (RL) agents. Large Language Models (LLMs), with a wealth of world knowledge, can help RL agents learn quickly and adapt to distribution shifts. In this work, we introduce Language Guided Exploration (LGE) framework, which uses a pre-trained language model (called GUIDE ) to provide decision-level guidance to an RL agent (called EXPLORER). We observe that on ScienceWorld (Wang et al.,2022), a challenging text environment, LGE outperforms vanilla RL agents significantly and also outperforms other sophisticated methods like Behaviour Cloning and Text Decision Transformer.

Diffusion model-based low-light image enhancement methods rely heavily on paired training data, leading to limited extensive application. Meanwhile, existing unsupervised methods lack effective bridging capabilities for unknown degradation. To address these limitations, we propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED. It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains and successfully alleviates the dependence on pairwise training data via zero-reference learning. Specifically, we first design the initial optimization network to preprocess the input image and implement bidirectional constraints between the diffusion model and the initial optimization network through multiple objective functions. Subsequently, the degradation factors of the real-world scene are optimized iteratively to achieve effective light enhancement. In addition, we explore a frequency-domain based and semantically guided appearance reconstruction module that encourages feature alignment of the recovered image at a fine-grained level and satisfies subjective expectations. Finally, extensive experiments demonstrate the superiority of our approach to other state-of-the-art methods and more significant generalization capabilities. We will open the source code upon acceptance of the paper.

Recent advancements in video semantic segmentation have made substantial progress by exploiting temporal correlations. Nevertheless, persistent challenges, including redundant computation and the reliability of the feature propagation process, underscore the need for further innovation. In response, we present Deep Common Feature Mining (DCFM), a novel approach strategically designed to address these challenges by leveraging the concept of feature sharing. DCFM explicitly decomposes features into two complementary components. The common representation extracted from a key-frame furnishes essential high-level information to neighboring non-key frames, allowing for direct re-utilization without feature propagation. Simultaneously, the independent feature, derived from each video frame, captures rapidly changing information, providing frame-specific clues crucial for segmentation. To achieve such decomposition, we employ a symmetric training strategy tailored for sparsely annotated data, empowering the backbone to learn a robust high-level representation enriched with common information. Additionally, we incorporate a self-supervised loss function to reinforce intra-class feature similarity and enhance temporal consistency. Experimental evaluations on the VSPW and Cityscapes datasets demonstrate the effectiveness of our method, showing a superior balance between accuracy and efficiency.

Self-supervised learned models have been found to be very effective for certain speech tasks such as automatic speech recognition, speaker identification, keyword spotting and others. While the features are undeniably useful in speech recognition and associated tasks, their utility in speech enhancement systems is yet to be firmly established, and perhaps not properly understood. In this paper, we investigate the uses of SSL representations for single-channel speech enhancement in challenging conditions and find that they add very little value for the enhancement task. Our constraints are designed around on-device real-time speech enhancement -- model is causal, the compute footprint is small. Additionally, we focus on low SNR conditions where such models struggle to provide good enhancement. In order to systematically examine how SSL representations impact performance of such enhancement models, we propose a variety of techniques to utilize these embeddings which include different forms of knowledge-distillation and pre-training.

Counterfactual explanations constitute among the most popular methods for analyzing the predictions of black-box systems since they can recommend cost-efficient and actionable changes to the input to turn an undesired system's output into a desired output. While most of the existing counterfactual methods explain a single instance, several real-world use cases, such as customer satisfaction, require the identification of a single counterfactual that can satisfy multiple instances (e.g. customers) simultaneously. In this work, we propose a flexible two-stage algorithm for finding groups of instances along with cost-efficient multi-instance counterfactual explanations. This is motivated by the fact that in most previous works the aspect of finding such groups is not addressed.

Controlled execution of dynamic motions in quadrupedal robots, especially those with articulated soft bodies, presents a unique set of challenges that traditional methods struggle to address efficiently. In this study, we tackle these issues by relying on a simple yet effective two-stage learning framework to generate dynamic motions for quadrupedal robots. First, a gradient-free evolution strategy is employed to discover simply represented control policies, eliminating the need for a predefined reference motion. Then, we refine these policies using deep reinforcement learning. Our approach enables the acquisition of complex motions like pronking and back-flipping, effectively from scratch. Additionally, our method simplifies the traditionally labour-intensive task of reward shaping, boosting the efficiency of the learning process. Importantly, our framework proves particularly effective for articulated soft quadrupeds, whose inherent compliance and adaptability make them ideal for dynamic tasks but also introduce unique control challenges.

Liver transplantation is a life-saving procedure for patients with end-stage liver disease. There are two main challenges in liver transplant: finding the best matching patient for a donor and ensuring transplant equity among different subpopulations. The current MELD scoring system evaluates a patient's mortality risk if not receiving an organ within 90 days. However, the donor-patient matching should also consider post-transplant risk factors, such as cardiovascular disease, chronic rejection, etc., which are all common complications after transplant. Accurate prediction of these risk scores remains a significant challenge. In this study, we used predictive models to solve the above challenges. Specifically, we proposed a deep-learning model to predict multiple risk factors after a liver transplant. By formulating it as a multi-task learning problem, the proposed deep neural network was trained to simultaneously predict the five post-transplant risks and achieve equal good performance by exploiting task-balancing techniques. We also proposed a novel fairness-achieving algorithm to ensure prediction fairness across different subpopulations. We used electronic health records of 160,360 liver transplant patients, including demographic information, clinical variables, and laboratory values, collected from the liver transplant records of the United States from 1987 to 2018. The model's performance was evaluated using various performance metrics such as AUROC and AUPRC. Our experiment results highlighted the success of our multitask model in achieving task balance while maintaining accuracy. The model significantly reduced the task discrepancy by 39%. Further application of the fairness-achieving algorithm substantially reduced fairness disparity among all sensitive attributes (gender, age group, and race/ethnicity) in each risk factor.

The application of artificial intelligence to simulate air-to-air combat scenarios is attracting increasing attention. To date the high-dimensional state and action spaces, the high complexity of situation information (such as imperfect and filtered information, stochasticity, incomplete knowledge about mission targets) and the nonlinear flight dynamics pose significant challenges for accurate air combat decision-making. These challenges are exacerbated when multiple heterogeneous agents are involved. We propose a hierarchical multi-agent reinforcement learning framework for air-to-air combat with multiple heterogeneous agents. In our framework, the decision-making process is divided into two stages of abstraction, where heterogeneous low-level policies control the action of individual units, and a high-level commander policy issues macro commands given the overall mission targets. Low-level policies are trained for accurate unit combat control. Their training is organized in a learning curriculum with increasingly complex training scenarios and league-based self-play. The commander policy is trained on mission targets given pre-trained low-level policies. The empirical validation advocates the advantages of our design choices.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

北京阿比特科技有限公司