亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study communication systems over band-limited Additive White Gaussian Noise (AWGN) channels in which the transmitter output is constrained to be symmetric binary (bi-polar). In this work we improve the original Ozarov-Wyner-Ziv (OWZ) lower bound on capacity by introducing new achievability schemes with two advantages over the studied OWZ scheme which is based on peak-power constrained pulse-amplitude modulation. Our schemes achieve a moderately improved information rate and do so with much less sign transitions of the binary signal. The gap between the known upper-bound based on spectral constrains of bi-polar signals and our achievable lower bound is reduced to 0.93 bits per Nyquist interval at high SNR.

相關內容

Accurate channel modeling is the foundation of communication system design. However, the traditional measurement-based modeling approach has increasing challenges for the scenarios with insufficient measurement data. To obtain enough data for channel modeling, the Artificial Neural Network (ANN) is used in this paper to predict channel data. The high mobility railway channel is considered, which is a typical scenario where it is challenging to obtain enough data for modeling within a short sampling interval. Three types of ANNs, the Back Propagation Network, Radial Basis Function Neural Network and Extreme Learning Machine, are considered to predict channel path loss and shadow fading. The Root-Mean-Square error is used to evaluate prediction accuracy. The factors that may influence prediction accuracy are compared and discussed, including the type of network, number of neurons and proportion of training data. It is found that a larger number of neurons can significantly reduce prediction error, whereas the influence of proportion of training data is relatively small. The results can be used to improve modeling accuracy of path loss and shadow fading when measurement data is reduced.

Recent channel state information (CSI)-based positioning pipelines rely on deep neural networks (DNNs) in order to learn a mapping from estimated CSI to position. Since real-world communication transceivers suffer from hardware impairments, CSI-based positioning systems typically rely on features that are designed by hand. In this paper, we propose a CSI-based positioning pipeline that directly takes raw CSI measurements and learns features using a structured DNN in order to generate probability maps describing the likelihood of the transmitter being at pre-defined grid points. To further improve the positioning accuracy of moving user equipments, we propose to fuse a time-series of learned CSI features or a time-series of probability maps. To demonstrate the efficacy of our methods, we perform experiments with real-world indoor line-of-sight (LoS) and non-LoS channel measurements. We show that CSI feature learning and time-series fusion can reduce the mean distance error by up to 2.5$\boldsymbol\times$ compared to the state-of-the-art.

In this paper, we consider the problem of variable-length coding over the class of memoryless binary asymmetric channels (BACs) with noiseless feedback, including the binary symmetric channel (BSC) as a special case. In 2012, Naghshvar et al. introduced an encoding scheme, which we refer to as the small-enough-difference (SED) encoder, which asymptotically achieves both capacity and Burnashev's optimal error exponent for symmetric binary-input channels. Building on the work of Naghshvar et al., this paper extends the SED encoding scheme to the class of BACs and develops a non-asymptotic upper bound on the average blocklength that is shown to achieve both capacity and the optimal error exponent. For the specific case of the BSC, we develop an additional non-asymptotic bound using a two-phase analysis that leverages both a submartingale synthesis and a Markov chain time of first passage analysis. For the BSC with capacity $1/2$, both new achievability bounds exceed the achievability bound of Polyanskiy et al. for a system limited to stop-feedback codes.

Pattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the aposteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between Transformer classifiers analyzed theoretically in this paper and Transformer classifiers used nowadays in practice are illustrated by considering classification problems in natural language processing.

We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated with a performance loss in non-isotropic scattering environments. We propose two novel estimation methods that can be applied without downlink pilots. The first method is model-based and asymptotic arguments are utilized to identify a connection between the effective channel gain and the average received power during a coherence interval. The second method is data-driven and trains a neural network to identify a mapping between the available information and the effective channel gain. Both methods can be utilized for any channel distribution and precoding. For the model-aided method, we derive all expressions in closed form for the case when maximum ratio or zero-forcing precoding is used. We compare the proposed methods with the state-of-the-art using the normalized mean-squared error and spectral efficiency (SE). The results suggest that the two proposed methods provide better SE than the state-of-the-art when there is a low level of channel hardening, while the performance difference is relatively small with the uncorrelated channel model.

This work studies the joint beamforming design problem of achieving max-min rate fairness in a satellite-terrestrial integrated network (STIN) where the satellite provides wide coverage to multibeam multicast satellite users (SUs), and the terrestrial base station (BS) serves multiple cellular users (CUs) in a densely populated area. Both the satellite and BS operate in the same frequency band. Since rate-splitting multiple access (RSMA) has recently emerged as a promising strategy for non-orthogonal transmission and robust interference management in multi-antenna wireless networks, we present two RSMA-based STIN schemes, namely the coordinated scheme relying on channel state information (CSI) sharing and the cooperative scheme relying on CSI and data sharing. Our objective is to maximize the minimum fairness rate amongst all SUs and CUs subject to transmit power constraints at the satellite and the BS. A joint beamforming algorithm is proposed to reformulate the original problem into an approximately equivalent convex one which can be iteratively solved. Moreover, an expectation-based robust joint beamforming algorithm is proposed against the practical environment when satellite channel phase uncertainties are considered. Simulation results demonstrate the effectiveness and robustness of our proposed RSMA schemes for STIN, and exhibit significant performance gains compared with various traditional transmission strategies.

Recent works have shown that the task of wireless transmission of images can be learned with the use of machine learning techniques. Very promising results in end-to-end image quality, superior to popular digital schemes that utilize source and channel coding separation, have been demonstrated through the training of an autoencoder, with a non-trainable channel layer in the middle. However, these methods assume that any complex value can be transmitted over the channel, which can prevent the application of the algorithm in scenarios where the hardware or protocol can only admit certain sets of channel inputs, such as the use of a digital constellation. Herein, we propose DeepJSCC-Q, an end-to-end optimized joint source-channel coding scheme for wireless image transmission, which is able to operate with a fixed channel input alphabet. We show that DeepJSCC-Q can achieve similar performance to models that use continuous-valued channel input. Importantly, it preserves the graceful degradation of image quality observed in prior work when channel conditions worsen, making DeepJSCC-Q much more attractive for deployment in practical systems.

This letter establishes a unified analytical framework to study the asymptotic average mutual information (AMI) of mixture gamma (MG) distributed fading channels driven by finite input signals in the high signal-to-noise ratio (SNR) regime. It is found that the AMI converges to some constant as the average SNR increases and its rate of convergence (ROC) is determined by the coding gain and diversity order. Moreover, the derived results are used to investigate the asymptotic optimal power allocation policy of a bank of parallel fading channels having finite inputs. It is suggested that in the high SNR region, the sub-channel with a lower coding gain or diversity order should be allocated with more power. Finally, numerical results are provided to collaborate the theoretical analyses.

Detailed derivations of two bounds of the minimum mean-square error (MMSE) of complex-valued multiple-input multiple-output (MIMO) systems are proposed for performance evaluation. Particularly, the lower bound is derived based on a genie-aided MMSE estimator, whereas the upper bound is derived based on a maximum-likelihood (ML) estimator. Using the famous relationship between the mutual information (MI) and MMSE, two bounds for the MI are also derived, based on which we discuss the asymptotic behaviours of the average MI in the high-signal-to-noise ratio (SNR) regime. Theoretical analyses suggest that the average MI will converge its maximum as the SNR increases and the diversity order is the same as receive antenna number.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司