The future 6G network is envisioned to be AI-native, and as such, ML models will be pervasive in support of optimizing performance, reducing energy consumption, and in coping with increasing complexity and heterogeneity. A key challenge is automating the process of finding optimal model architectures satisfying stringent requirements stemming from varying tasks, dynamicity and available resources in the infrastructure and deployment positions. In this paper, we describe and review the state-of-the-art in Neural Architecture Search and Transfer Learning and their applicability in networking. Further, we identify open research challenges and set directions with a specific focus on three main requirements with elements unique to the future network, namely combining NAS and TL, multi-objective search, and tabular data. Finally, we outline and discuss both near-term and long-term work ahead.
Despite recent advances, Automatic Speech Recognition (ASR) systems are still far from perfect. Typical errors include acronyms, named entities and domain-specific special words for which little or no data is available. To address the problem of recognizing these words, we propose an self-supervised continual learning approach. Given the audio of a lecture talk with corresponding slides, we bias the model towards decoding new words from the slides by using a memory-enhanced ASR model from previous work. Then, we perform inference on the talk, collecting utterances that contain detected new words into an adaptation dataset. Continual learning is then performed on this set by adapting low-rank matrix weights added to each weight matrix of the model. The whole procedure is iterated for many talks. We show that with this approach, we obtain increasing performance on the new words when they occur more frequently (more than 80% recall) while preserving the general performance of the model.
Federated Learning (FL) has attracted much interest due to the significant advantages it brings to training deep neural network (DNN) models. However, since communications and computation resources are limited, training DNN models in FL systems face challenges such as elevated computational and communication costs in complex tasks. Sparse training schemes gain increasing attention in order to scale down the dimensionality of each client (i.e., node) transmission. Specifically, sparsification with error correction methods is a promising technique, where only important updates are sent to the parameter server (PS) and the rest are accumulated locally. While error correction methods have shown to achieve a significant sparsification level of the client-to-PS message without harming convergence, pushing sparsity further remains unresolved due to the staleness effect. In this paper, we propose a novel algorithm, dubbed Federated Learning with Accumulated Regularized Embeddings (FLARE), to overcome this challenge. FLARE presents a novel sparse training approach via accumulated pulling of the updated models with regularization on the embeddings in the FL process, providing a powerful solution to the staleness effect, and pushing sparsity to an exceptional level. The performance of FLARE is validated through extensive experiments on diverse and complex models, achieving a remarkable sparsity level (10 times and more beyond the current state-of-the-art) along with significantly improved accuracy. Additionally, an open-source software package has been developed for the benefit of researchers and developers in related fields.
In the past few years, large-scale pre-trained vision-language models like CLIP have achieved tremendous success in various fields. Naturally, how to transfer the rich knowledge in such huge pre-trained models to downstream tasks and datasets becomes a hot topic. During downstream adaptation, the most challenging problems are overfitting and catastrophic forgetting, which can cause the model to overly focus on the current data and lose more crucial domain-general knowledge. Existing works use classic regularization techniques to solve the problems. As solutions become increasingly complex, the ever-growing storage and inference costs are also a significant problem that urgently needs to be addressed. While in this paper, we start from an observation that proper random noise can suppress overfitting and catastrophic forgetting. Then we regard quantization error as a kind of noise, and explore quantization for regularizing vision-language model, which is quite efficiency and effective. Furthermore, to improve the model's generalization capability while maintaining its specialization capacity at minimal cost, we deeply analyze the characteristics of the weight distribution in prompts, conclude several principles for quantization module design and follow such principles to create several competitive baselines. The proposed method is significantly efficient due to its inherent lightweight nature, making it possible to adapt on extremely resource-limited devices. Our method can be fruitfully integrated into many existing approaches like MaPLe, enhancing accuracy while reducing storage overhead, making it more powerful yet versatile. Extensive experiments on 11 datasets shows great superiority of our method sufficiently. Code is available at //github.com/beyondhtx/QPrompt.
In mobile robotics and autonomous driving, it is natural to model agent interactions as the Nash equilibrium of a noncooperative, dynamic game. These methods inherently rely on observations from sensors such as lidars and cameras to identify agents participating in the game and, therefore, have difficulty when some agents are occluded. To address this limitation, this paper presents an occlusion-aware game-theoretic inference method to estimate the locations of potentially occluded agents, and simultaneously infer the intentions of both visible and occluded agents, which best accounts for the observations of visible agents. Additionally, we propose a receding horizon planning strategy based on an occlusion-aware contingency game designed to navigate in scenarios with potentially occluded agents. Monte Carlo simulations validate our approach, demonstrating that it accurately estimates the game model and trajectories for both visible and occluded agents using noisy observations of visible agents. Our planning pipeline significantly enhances navigation safety when compared to occlusion-ignorant baseline as well.
Substantial research works have shown that deep models, e.g., pre-trained models, on the large corpus can learn universal language representations, which are beneficial for downstream NLP tasks. However, these powerful models are also vulnerable to various privacy attacks, while much sensitive information exists in the training dataset. The attacker can easily steal sensitive information from public models, e.g., individuals' email addresses and phone numbers. In an attempt to address these issues, particularly the unauthorized use of private data, we introduce a novel watermarking technique via a backdoor-based membership inference approach named TextMarker, which can safeguard diverse forms of private information embedded in the training text data. Specifically, TextMarker only requires data owners to mark a small number of samples for data copyright protection under the black-box access assumption to the target model. Through extensive evaluation, we demonstrate the effectiveness of TextMarker on various real-world datasets, e.g., marking only 0.1% of the training dataset is practically sufficient for effective membership inference with negligible effect on model utility. We also discuss potential countermeasures and show that TextMarker is stealthy enough to bypass them.
Recent advances in the field of deep learning and impressive performance of deep neural networks (DNNs) for perception have resulted in an increased demand for their use in automated driving (AD) systems. The safety of such systems is of utmost importance and thus requires to consider the unique properties of DNNs. In order to achieve safety of AD systems with DNN-based perception components in a systematic and comprehensive approach, so-called safety concerns have been introduced as a suitable structuring element. On the one hand, the concept of safety concerns is -- by design -- well aligned to existing standards relevant for safety of AD systems such as ISO 21448 (SOTIF). On the other hand, it has already inspired several academic publications and upcoming standards on AI safety such as ISO PAS 8800. While the concept of safety concerns has been previously introduced, this paper extends and refines it, leveraging feedback from various domain and safety experts in the field. In particular, this paper introduces an additional categorization for a better understanding as well as enabling cross-functional teams to jointly address the concerns.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.