亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background: Acute kidney injury (AKI) is a clinical syndrome affecting almost one fifth of hospitalized patients, as well as more than half of the patients who are admitted to the intensive care unit (ICU). Stratifying AKI patients into groups based on severity and duration would facilitate more targeted efforts for treating AKI. Methods: In a retrospective, multicenter and longitudinal cohort study of 935,679 patients who were admitted between 2012 and 2020 to health centers included in OneFlorida+ Network, we analyzed the impact of AKI trajectories which are rapidly reversed AKI, persistent AKI with renal recovery, and persistent AKI without renal recovery on patients' clinical outcomes, including hospital, 30-day, 1-year, and 3-year mortality, kidney replacement therapy, new chronic kidney disease (CKD) within 90 days or 1-year of discharge, CKD progression within 1-year of discharge, resource utilization, hospital disposition, and major complications during hospitalization. As analytical approaches, Kaplan-Meier estimators and survival curves, Cox proportional-hazards regression model, logistic regression model, Kruskal-Wallis test, analysis of variance, chi-square, Fisher's exact test were used. Results: Among 2,187,254 encounters, 14% had AKI, of which 63%, 21%, and 16% had Stage 1, 2, and 3, respectively, as the worst AKI stage. Fraction of patients with persistent AKI was 31%. Patients with AKI had worse clinical outcomes and increased resource utilization compared to patients without the condition. One-year mortality was 5 times greater for patients with persistent AKI compared to those without AKI. Conclusions: Persistent AKI was associated with prolonged hospitalization, increased ICU admission and mortality compared to the other groups. This may emphasize the critical need for devising strategies targeting effective management of AKI and prevention of persisting AKI.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · 語言模型化 · Unstructured · 大語言模型 ·
2024 年 4 月 24 日

Objective: Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants. Although leveraging electronic health records (EHR) for recruitment has gained popularity, the complex nature of unstructured medical texts presents challenges in efficiently identifying participants. Natural Language Processing (NLP) techniques have emerged as a solution with a recent focus on transformer models. In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task from unstructured medical notes collected in the EHR. Methods: To process the medical records, we selected the most related sentences of the records to the eligibility criteria needed for the trial. The SNOMED CT concepts related to each eligibility criterion were collected. Medical records were also annotated with MedCAT based on the SNOMED CT ontology. Annotated sentences including concepts matched with the criteria-relevant terms were extracted. A prompt-based large language model (Generative Pre-trained Transformer (GPT) in this study) was then used with the extracted sentences as the training set. To assess its effectiveness, we evaluated the model's performance using the dataset from the 2018 n2c2 challenge, which aimed to classify medical records of 311 patients based on 13 eligibility criteria through NLP techniques. Results: Our proposed model showed the overall micro and macro F measures of 0.9061 and 0.8060 which were among the highest scores achieved by the experiments performed with this dataset. Conclusion: The application of a prompt-based large language model in this study to classify patients based on eligibility criteria received promising scores. Besides, we proposed a method of extractive summarization with the aid of SNOMED CT ontology that can be also applied to other medical texts.

Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure (BP) dynamics. We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA, representing a demographically diverse population. We examined and compared population-wide statistics of bivariate changes in systolic BP (SBP) and diastolic BP (DBP) across sex, age, and race/ethnicity. The analysis revealed that males have higher BP levels than females and exhibit a distinct BP profile with age. Notably, average SBP consistently rises with age, whereas average DBP peaks in the forties age group. Among the ethnic groups studied, Blacks have marginally higher BPs and a greater standard deviation. We also discovered a significant correlation between SBP and DBP at the population level, a phenomenon not previously researched. These results emphasize the importance of demography-specific BP analysis for clinical diagnosis and provide valuable insights for developing personalized, demography-specific healthcare interventions.

Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. While current state-of-the-art techniques yield impressive results, the size and computational cost of these models create challenges for practical industry applications. To address this challenge, we present KDAS, a Knowledge Distillation framework that incorporates attention supervision, and our proposed Symmetrical Guiding Module. This framework is designed to facilitate a compact student model with fewer parameters, allowing it to learn the strengths of the teacher model and mitigate the inconsistency between teacher features and student features, a common challenge in Knowledge Distillation, via the Symmetrical Guiding Module. Through extensive experiments, our compact models demonstrate their strength by achieving competitive results with state-of-the-art methods, offering a promising approach to creating compact models with high accuracy for polyp segmentation and in the medical imaging field. The implementation is available on //github.com/huyquoctrinh/KDAS.

Clone-censor-weighting (CCW) is an analytic method for studying treatment regimens that are indistinguishable from one another at baseline without relying on landmark dates or creating immortal person time. One particularly interesting CCW application is estimating outcomes when starting treatment within specific time windows in observational data (e.g., starting a treatment within 30 days of hospitalization). In such cases, CCW estimates something fairly complex. We show how using CCW to study a regimen such as "start treatment prior to day 30" estimates the potential outcome of a hypothetical intervention where A) prior to day 30, everyone follows the treatment start distribution of the study population and B) everyone who has not initiated by day 30 initiates on day 30. As a result, the distribution of treatment initiation timings provides essential context for the results of CCW studies. We also show that if the exposure effect varies over time, ignoring exposure history when estimating inverse probability of censoring weights (IPCW) estimates the risk under an impossible intervention and can create selection bias. Finally, we examine some simplifying assumptions that can make this complex treatment effect more interpretable and allow everyone to contribute to IPCW.

Early detection of depressive episodes is crucial in managing mental health disorders such as Major Depressive Disorder (MDD) and Bipolar Disorder. However, existing methods often necessitate active participation or are confined to clinical settings. Addressing this gap, we introduce PupilSense, a novel, deep learning-driven mobile system designed to discreetly track pupillary responses as users interact with their smartphones in their daily lives. This study presents a proof-of-concept exploration of PupilSense's capabilities, where we captured real-time pupillary data from users in naturalistic settings. Our findings indicate that PupilSense can effectively and passively monitor indicators of depressive episodes, offering a promising tool for continuous mental health assessment outside laboratory environments. This advancement heralds a significant step in leveraging ubiquitous mobile technology for proactive mental health care, potentially transforming how depressive episodes are detected and managed in everyday contexts.

Breast cancer is the most common malignant tumor among women and the second cause of cancer-related death. Early diagnosis in clinical practice is crucial for timely treatment and prognosis. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has revealed great usability in the preoperative diagnosis and assessing therapy effects thanks to its capability to reflect the morphology and dynamic characteristics of breast lesions. However, most existing computer-assisted diagnosis algorithms only consider conventional radiomic features when classifying benign and malignant lesions in DCE-MRI. In this study, we propose to fully leverage the dynamic characteristics from the kinetic curves as well as the radiomic features to boost the classification accuracy of benign and malignant breast lesions. The proposed method is a fully automated solution by directly analyzing the 3D features from the DCE-MRI. The proposed method is evaluated on an in-house dataset including 200 DCE-MRI scans with 298 breast tumors (172 benign and 126 malignant tumors), achieving favorable classification accuracy with an area under curve (AUC) of 0.94. By simultaneously considering the dynamic and radiomic features, it is beneficial to effectively distinguish between benign and malignant breast lesions.

Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.

Two goals - improving replicability and accountability of Machine Learning research respectively, have accrued much attention from the AI ethics and the Machine Learning community. Despite sharing the measures of improving transparency, the two goals are discussed in different registers - replicability registers with scientific reasoning whereas accountability registers with ethical reasoning. Given the existing challenge of the Responsibility Gap - holding Machine Learning scientists accountable for Machine Learning harms due to them being far from sites of application, this paper posits that reconceptualizing replicability can help bridge the gap. Through a shift from model performance replicability to claim replicability, Machine Learning scientists can be held accountable for producing non-replicable claims that are prone to eliciting harm due to misuse and misinterpretation. In this paper, I make the following contributions. First, I define and distinguish two forms of replicability for ML research that can aid constructive conversations around replicability. Second, I formulate an argument for claim-replicability's advantage over model performance replicability in justifying assigning accountability to Machine Learning scientists for producing non-replicable claims and show how it enacts a sense of responsibility that is actionable. In addition, I characterize the implementation of claim replicability as more of a social project than a technical one by discussing its competing epistemological principles, practical implications on Circulating Reference, Interpretative Labor, and research communication.

The escalating prevalence of diabetes globally underscores the need for diabetes management. Recent research highlights the growing focus on digital biomarkers in diabetes management, with innovations in computational frameworks and noninvasive monitoring techniques using personalized glucose metrics. However, they predominantly focus on insulin dosing and specific glucose values, or with limited attention given to overall glycemic control. This leaves a gap in expanding the scope of digital biomarkers for overall glycemic control in diabetes management. To address such a research gap, we propose GluMarker -- an end-to-end framework for modeling digital biomarkers using broader factors sources to predict glycemic control. Through the assessment and refinement of various machine learning baselines, GluMarker achieves state-of-the-art on Anderson's dataset in predicting next-day glycemic control. Moreover, our research identifies key digital biomarkers for the next day's glycemic control prediction. These identified biomarkers are instrumental in illuminating the daily factors that influence glycemic management, offering vital insights for diabetes care.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

北京阿比特科技有限公司