Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation. However, the considered output candidates of the underlying search algorithm are under-explored and under-explained. We tackle this shortcoming by proposing a tree-in-the-loop approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs. To support these tasks, we present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities. Our approach allows interactions on multiple levels and offers an iterative pipeline that encompasses generating, exploring, and comparing output candidates, as well as fine-tuning the model based on adapted data. Our case study shows that our tool generates new insights in gender bias analysis beyond state-of-the-art template-based methods. Additionally, we demonstrate the applicability of our approach in a qualitative user study. Finally, we quantitatively evaluate the adaptability of the model to few samples, as occurring in text-generation use cases.
When prompting a language model (LM), users frequently expect the model to adhere to a set of behavioral principles across diverse tasks, such as producing insightful content while avoiding harmful or biased language. Instilling such principles into a model can be resource-intensive and technically challenging, generally requiring human preference labels or examples. We introduce SAMI, a method for teaching a pretrained LM to follow behavioral principles that does not require any preference labels or demonstrations. SAMI is an iterative algorithm that finetunes a pretrained LM to increase the conditional mutual information between constitutions and self-generated responses given queries from a datasest. On single-turn dialogue and summarization, a SAMI-trained mistral-7b outperforms the initial pretrained model, with win rates between 66% and 77%. Strikingly, it also surpasses an instruction-finetuned baseline (mistral-7b-instruct) with win rates between 55% and 57% on single-turn dialogue. SAMI requires a "principle writer" model; to avoid dependence on stronger models, we further evaluate aligning a strong pretrained model (mixtral-8x7b) using constitutions written by a weak instruction-finetuned model (mistral-7b-instruct). The SAMI-trained mixtral-8x7b outperforms both the initial model and the instruction-finetuned model, achieving a 65% win rate on summarization. Our results indicate that a pretrained LM can learn to follow constitutions without using preference labels, demonstrations, or human oversight.
Large language models (LLMs) have shown significant potential for robotics applications, particularly task planning, by harnessing their language comprehension and text generation capabilities. However, in applications such as household robotics, a critical gap remains in the personalization of these models to individual user preferences. We introduce LLM-Personalize, a novel framework with an optimization pipeline designed to personalize LLM planners for household robotics. Our LLM-Personalize framework features an LLM planner that performs iterative planning in multi-room, partially-observable household scenarios, making use of a scene graph constructed with local observations. The generated plan consists of a sequence of high-level actions which are subsequently executed by a controller. Central to our approach is the optimization pipeline, which combines imitation learning and iterative self-training to personalize the LLM planner. In particular, the imitation learning phase performs initial LLM alignment from demonstrations, and bootstraps the model to facilitate effective iterative self-training, which further explores and aligns the model to user preferences. We evaluate LLM-Personalize on Housekeep, a challenging simulated real-world 3D benchmark for household rearrangements, and show that LLM-Personalize achieves more than a 30 percent increase in success rate over existing LLM planners, showcasing significantly improved alignment with human preferences. Project page: //donggehan.github.io/projectllmpersonalize/.
Large language models (LLMs) have gained significant attention in various fields but prone to hallucination, especially in knowledge-intensive (KI) tasks. To address this, retrieval-augmented generation (RAG) has emerged as a popular solution to enhance factual accuracy. However, traditional retrieval modules often rely on large document index and disconnect with generative tasks. With the advent of generative retrieval (GR), language models can retrieve by directly generating document identifiers (DocIDs), offering superior performance in retrieval tasks. However, the potential relationship between GR and downstream tasks remains unexplored. In this paper, we propose \textbf{CorpusLM}, a unified language model that leverages external corpus to tackle various knowledge-intensive tasks by integrating generative retrieval, closed-book generation, and RAG through a unified greedy decoding process. We design the following mechanisms to facilitate effective retrieval and generation, and improve the end-to-end effectiveness of KI tasks: (1) We develop a ranking-oriented DocID list generation strategy, which refines GR by directly learning from a DocID ranking list, to improve retrieval quality. (2) We design a continuous DocIDs-References-Answer generation strategy, which facilitates effective and efficient RAG. (3) We employ well-designed unsupervised DocID understanding tasks, to comprehend DocID semantics and their relevance to downstream tasks. We evaluate our approach on the widely used KILT benchmark with two variants of backbone models, i.e., T5 and Llama2. Experimental results demonstrate the superior performance of our models in both retrieval and downstream tasks.
We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit. We encourage readers to listen to the demos at //jasonppy.github.io/VoiceCraft_web.
Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multi-modal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a multi-operator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multi-operator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.
Large language models (LLMs) have demonstrated outstanding performance in various tasks, such as text summarization, text question-answering, and etc. While their performance is impressive, the computational footprint due to their vast number of parameters can be prohibitive. Existing solutions such as SparseGPT and Wanda attempt to alleviate this issue through weight pruning. However, their layer-wise approach results in significant perturbation to the model's output and requires meticulous hyperparameter tuning, such as the pruning rate, which can adversely affect overall model performance. To address this, this paper introduces a novel LLM pruning technique dubbed blockwise parameter-efficient sparsity allocation (BESA) by applying a blockwise reconstruction loss. In contrast to the typical layer-wise pruning techniques, BESA is characterized by two distinctive attributes: i) it targets the overall pruning error with respect to individual transformer blocks, and ii) it allocates layer-specific sparsity in a differentiable manner, both of which ensure reduced performance degradation after pruning. Our experiments show that BESA achieves state-of-the-art performance, efficiently pruning LLMs like LLaMA1, and LLaMA2 with 7B to 70B parameters on a single A100 GPU in just five hours. Code is available at //github.com/OpenGVLab/LLMPrune-BESA.
Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multi-modal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a multi-operator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multi-operator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.
While current large language models (LLMs) demonstrate some capabilities in knowledge-intensive tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with infrequent knowledge and temporal degradation. In addition, the uninterpretable nature of parametric memorization makes it challenging to understand and prevent hallucination. Parametric memory pools and model editing are only partial solutions. Retrieval Augmented Generation (RAG) $\unicode{x2013}$ though non-parametric $\unicode{x2013}$ has its own limitations: it lacks structure, complicates interpretability and makes it hard to effectively manage stored knowledge. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.