Short-range wireless technologies will enable vehicles to communicate and coordinate their actions, thus improving people's safety and traffic efficiency. Whereas IEEE 802.11p (and related standards) had been the only practical solution for years, in 2016 a new option was introduced with Release 14 of long term evolution (LTE), which includes new features to enable direct vehicle-to-vehicle (V2V) communications. LTE-V2V promises a more efficient use of the channel compared to IEEE 802.11p thanks to an improved PHY layer and the use of orthogonal resources at the MAC layer. In LTE-V2V, a key role is played by the resource allocation algorithm and increasing efforts are being made to design new solutions to optimize the spatial reuse.In this context, an important aspect still little studied, is therefore that of identifying references that allow: 1) to have a perception of the space in which the resource allocation algorithms move; and 2) to verify the performance of new proposals. In this work, we focus on a highway scenario and identify two algorithms to be used as a minimum and maximum reference in terms of the packet reception probability (PRP). The PRP is derived as a function of various parameters that describe the scenario and settings, from the application to the physical layer. Results, obtained both in a simplified Poisson point process scenario and with realistic traffic traces, show that the PRP varies considerably with different algorithms and that there is room for the improvement of current solutions.
In surgical computer vision applications, obtaining labeled training data is challenging due to data-privacy concerns and the need for expert annotation. Unpaired image-to-image translation techniques have been explored to automatically generate large annotated datasets by translating synthetic images to the realistic domain. However, preserving the structure and semantic consistency between the input and translated images presents significant challenges, mainly when there is a distributional mismatch in the semantic characteristics of the domains. This study empirically investigates unpaired image translation methods for generating suitable data in surgical applications, explicitly focusing on semantic consistency. We extensively evaluate various state-of-the-art image translation models on two challenging surgical datasets and downstream semantic segmentation tasks. We find that a simple combination of structural-similarity loss and contrastive learning yields the most promising results. Quantitatively, we show that the data generated with this approach yields higher semantic consistency and can be used more effectively as training data.
Intelligent metasurface has recently emerged as a promising technology that enables the customization of wireless environments by harnessing large numbers of inexpensive configurable scattering elements. However, prior studies have predominantly focused on single-layer metasurfaces, which have limitations in terms of the number of beam patterns they can steer accurately due to practical hardware restrictions. In contrast, this paper introduces a novel stacked intelligent metasurface (SIM) design. Specifically, we investigate the integration of SIM into the downlink of a multiuser multiple-input single-output (MISO) communication system, where a SIM, consisting of a multilayer metasurface structure, is deployed at the base station (BS) to facilitate transmit beamforming in the electromagnetic wave domain. This eliminates the need for conventional digital beamforming and high-resolution digital-to-analog converters at the BS. To this end, we formulate an optimization problem that aims to maximize the sum rate of all user equipments by jointly optimizing the transmit power allocation at the BS and the wave-based beamforming at the SIM, subject to both the transmit power budget and discrete phase shift constraints. Furthermore, we propose a computationally efficient algorithm for solving this joint optimization problem and elaborate on the potential benefits of employing SIM in wireless networks. Finally, the numerical results corroborate the effectiveness of the proposed SIM-enabled wave-based beamforming design and evaluate the performance improvement achieved by the proposed algorithm compared to various benchmark schemes. It is demonstrated that considering the same number of transmit antennas, the proposed SIM-based system achieves about 200\% improvement in terms of sum rate compared to conventional MISO systems.
Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and its diverse downstream real-world applications. Despite the huge success in learning graph representations, current GNN models have demonstrated their vulnerability to potentially existent adversarial examples on graph-structured data. Existing approaches are either limited to structure attacks or restricted to local information, urging for the design of a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" attack challenge, we present a novel and general framework to generate adversarial examples via manipulating graph structure and node features. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.
Large-scale meteorological disasters are increasing around the world, and power outage damage by natural disaster such as typhoons and earthquakes is increasing in Japan as well. Corresponding to the need of reduction of economic losses due to power outages, we are promoting research of resilient grids that minimizes power outage duration. In this report, we propose PACEM (Poles-Aware moving Cost Estimation Method) for determining travel costs between failure points based on the tilt angle and direction of electric poles obtained from pole-mounted sensors and road condition data. Evaluation result shows that the total recovery time can be reduced by 28% in the target area.
We propose a general approach to evaluating the performance of robust estimators based on adversarial losses under misspecified models. We first show that adversarial risk is equivalent to the risk induced by a distributional adversarial attack under certain smoothness conditions. This ensures that the adversarial training procedure is well-defined. To evaluate the generalization performance of the adversarial estimator, we study the adversarial excess risk. Our proposed analysis method includes investigations on both generalization error and approximation error. We then establish non-asymptotic upper bounds for the adversarial excess risk associated with Lipschitz loss functions. In addition, we apply our general results to adversarial training for classification and regression problems. For the quadratic loss in nonparametric regression, we show that the adversarial excess risk bound can be improved over those for a general loss.
The increase in security concerns due to technological advancements has led to the popularity of biometric approaches that utilize physiological or behavioral characteristics for enhanced recognition. Face recognition systems (FRSs) have become prevalent, but they are still vulnerable to image manipulation techniques such as face morphing attacks. This study investigates the impact of the alignment settings of input images on deep learning face morphing detection performance. We analyze the interconnections between the face contour and image context and suggest optimal alignment conditions for face morphing detection.
Autonomous robots would benefit a lot by gaining the ability to manipulate their environment to solve path planning tasks, known as the Navigation Among Movable Obstacle (NAMO) problem. In this paper, we present a deep reinforcement learning approach for solving NAMO locally, near narrow passages. We train parallel agents in physics simulation using an Advantage Actor-Critic based algorithm with a multi-modal neural network. We present an online policy that is able to push obstacles in a non-axial-aligned fashion, react to unexpected obstacle dynamics in real-time, and solve the local NAMO problem. Experimental validation in simulation shows that the presented approach generalises to unseen NAMO problems in unknown environments. We further demonstrate the implementation of the policy on a real quadrupedal robot, showing that the policy can deal with real-world sensor noises and uncertainties in unseen NAMO tasks.
Developing reliable autonomous driving algorithms poses challenges in testing, particularly when it comes to safety-critical traffic scenarios involving pedestrians. An open question is how to simulate rare events, not necessarily found in autonomous driving datasets or scripted simulations, but which can occur in testing, and, in the end may lead to severe pedestrian related accidents. This paper presents a method for designing a suicidal pedestrian agent within the CARLA simulator, enabling the automatic generation of traffic scenarios for testing safety of autonomous vehicles (AVs) in dangerous situations with pedestrians. The pedestrian is modeled as a reinforcement learning (RL) agent with two custom reward functions that allow the agent to either arbitrarily or with high velocity to collide with the AV. Instead of significantly constraining the initial locations and the pedestrian behavior, we allow the pedestrian and autonomous car to be placed anywhere in the environment and the pedestrian to roam freely to generate diverse scenarios. To assess the performance of the suicidal pedestrian and the target vehicle during testing, we propose three collision-oriented evaluation metrics. Experimental results involving two state-of-the-art autonomous driving algorithms trained end-to-end with imitation learning from sensor data demonstrate the effectiveness of the suicidal pedestrian in identifying decision errors made by autonomous vehicles controlled by the algorithms.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.