亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Collaboration by the sharing of semantic information is crucial to enable the enhancement of perception capabilities. However, existing collaborative perception methods tend to focus solely on the spatial features of semantic information, while neglecting the importance of the temporal dimension in collaborator selection and semantic information fusion, which instigates performance degradation. In this article, we propose a novel collaborative perception framework, IoSI-CP, which takes into account the importance of semantic information (IoSI) from both temporal and spatial dimensions. Specifically, we develop an IoSI-based collaborator selection method that effectively identifies advantageous collaborators but excludes those that bring negative benefits. Moreover, we present a semantic information fusion algorithm called HPHA (historical prior hybrid attention), which integrates a multi-scale transformer module and a short-term attention module to capture IoSI from spatial and temporal dimensions, and assigns varying weights for efficient aggregation. Extensive experiments on two open datasets demonstrate that our proposed IoSI-CP significantly improves the perception performance compared to state-of-the-art approaches. The code associated with this research is publicly available at //github.com/huangqzj/IoSI-CP/.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · SOFT · 相關系數 · Learning · MoDELS ·
2023 年 9 月 20 日

Model transparency, label correlation learning and the robust-ness to label noise are crucial for multilabel learning. However, few existing methods study these three characteristics simultaneously. To address this challenge, we propose the robust multilabel Takagi-Sugeno-Kang fuzzy system (R-MLTSK-FS) with three mechanisms. First, we design a soft label learning mechanism to reduce the effect of label noise by explicitly measuring the interactions between labels, which is also the basis of the other two mechanisms. Second, the rule-based TSK FS is used as the base model to efficiently model the inference relationship be-tween features and soft labels in a more transparent way than many existing multilabel models. Third, to further improve the performance of multilabel learning, we build a correlation enhancement learning mechanism based on the soft label space and the fuzzy feature space. Extensive experiments are conducted to demonstrate the superiority of the proposed method.

Learning-based controllers have demonstrated superior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input constraints, can be guaranteed by augmenting the learned control policy with a safety filter. Model predictive safety filters (MPSFs) are a common safety filtering approach based on model predictive control (MPC). MPSFs seek to guarantee safety while minimizing the difference between the proposed and applied inputs in the immediate next time step. This limited foresight can lead to jerky motions and undesired oscillations close to constraint boundaries, known as chattering. In this paper, we reduce chattering by considering input corrections over a longer horizon. Under the assumption of bounded model uncertainties, we prove recursive feasibility using techniques from robust MPC. We verified the proposed approach in both extensive simulation and quadrotor experiments. In experiments with a Crazyflie 2.0 drone, we show that, in addition to preserving the desired safety guarantees, the proposed MPSF reduces chattering by more than a factor of 4 compared to previous MPSF formulations.

The recent advancement of Blockchain technology consolidates its status as a viable alternative for various domains. However, evaluating the performance of blockchain applications can be challenging due to the underlying infrastructure's complexity and distributed nature. Therefore, a reliable modelling approach is needed to boost Blockchain-based applications' development and evaluation. While simulation-based solutions have been researched, machine learning (ML) model-based techniques are rarely discussed in conjunction with evaluating blockchain application performance. Our novel research makes use of two ML model-based methods. Firstly, we train a $k$ nearest neighbour ($k$NN) and support vector machine (SVM) to predict blockchain performance using predetermined configuration parameters. Secondly, we employ the salp swarm optimization (SO) ML model which enables the investigation of optimal blockchain configurations for achieving the required performance level. We use rough set theory to enhance SO, hereafter called ISO, which we demonstrate to prove achieving an accurate recommendation of optimal parameter configurations; despite uncertainty. Finally, statistical comparisons indicate that our models have a competitive edge. The $k$NN model outperforms SVM by 5\% and the ISO also demonstrates a reduction of 4\% inaccuracy deviation compared to regular SO.

Multi-channel speech enhancement utilizes spatial information from multiple microphones to extract the target speech. However, most existing methods do not explicitly model spatial cues, instead relying on implicit learning from multi-channel spectra. To better leverage spatial information, we propose explicitly incorporating spatial modeling by applying spherical harmonic transforms (SHT) to the multi-channel input. In detail, a hierarchical framework is introduced whereby lower order harmonics capturing broader spatial patterns are estimated first, then combined with higher orders to recursively predict finer spatial details. Experiments on TIMIT demonstrate the proposed method can effectively recover target spatial patterns and achieve improved performance over baseline models, using fewer parameters and computations. Explicitly modeling spatial information hierarchically enables more effective multi-channel speech enhancement.

The use of Mutual Information (MI) as a measure to evaluate the efficiency of cryptosystems has an extensive history. However, estimating MI between unknown random variables in a high-dimensional space is challenging. Recent advances in machine learning have enabled progress in estimating MI using neural networks. This work presents a novel application of MI estimation in the field of cryptography. We propose applying this methodology directly to estimate the MI between plaintext and ciphertext in a chosen plaintext attack. The leaked information, if any, from the encryption could potentially be exploited by adversaries to compromise the computational security of the cryptosystem. We evaluate the efficiency of our approach by empirically analyzing multiple encryption schemes and baseline approaches. Furthermore, we extend the analysis to novel network coding-based cryptosystems that provide individual secrecy and study the relationship between information leakage and input distribution.

Using large language models (LMs) for query or document expansion can improve generalization in information retrieval. However, it is unknown whether these techniques are universally beneficial or only effective in specific settings, such as for particular retrieval models, dataset domains, or query types. To answer this, we conduct the first comprehensive analysis of LM-based expansion. We find that there exists a strong negative correlation between retriever performance and gains from expansion: expansion improves scores for weaker models, but generally harms stronger models. We show this trend holds across a set of eleven expansion techniques, twelve datasets with diverse distribution shifts, and twenty-four retrieval models. Through qualitative error analysis, we hypothesize that although expansions provide extra information (potentially improving recall), they add additional noise that makes it difficult to discern between the top relevant documents (thus introducing false positives). Our results suggest the following recipe: use expansions for weaker models or when the target dataset significantly differs from training corpus in format; otherwise, avoid expansions to keep the relevance signal clear.

Expensive sensors and inefficient algorithmic pipelines significantly affect the overall cost of autonomous machines. However, affordable robotic solutions are essential to practical usage, and their financial impact constitutes a fundamental requirement to employ service robotics in most fields of application. Among all, researchers in the precision agriculture domain strive to devise robust and cost-effective autonomous platforms in order to provide genuinely large-scale competitive solutions. In this article, we present a complete algorithmic pipeline for row-based crops autonomous navigation, specifically designed to cope with low-range sensors and seasonal variations. Firstly, we build on a robust data-driven methodology to generate a viable path for the autonomous machine, covering the full extension of the crop with only the occupancy grid map information of the field. Moreover, our solution leverages on latest advancement of deep learning optimization techniques and synthetic generation of data to provide an affordable solution that efficiently tackles the well-known Global Navigation Satellite System unreliability and degradation due to vegetation growing inside rows. Extensive experimentation and simulations against computer-generated environments and real-world crops demonstrated the robustness and intrinsic generalizability of our methodology that opens the possibility of highly affordable and fully autonomous machines.

Transformer has been considered the dominating neural architecture in NLP and CV, mostly under a supervised setting. Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL. However, the evolution of Transformers in RL has not yet been well unraveled. Hence, in this paper, we seek to systematically review motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.

The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

北京阿比特科技有限公司