亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastically evolving geometric systems are studied in shape analysis and computational anatomy for modelling random evolutions of human organ shapes. The notion of geodesic paths between shapes is central to shape analysis and has a natural generalisation as diffusion bridges in a stochastic setting. Simulation of such bridges is key to solve inference and registration problems in shape analysis. We demonstrate how to apply state-of-the-art diffusion bridge simulation methods to recently introduced stochastic shape deformation models thereby substantially expanding the applicability of such models. We exemplify these methods by estimating template shapes from observed shape configurations while simultaneously learning model parameters.

相關內容

The dynamics of systems biological processes are usually modeled by a system of ordinary differential equations (ODEs) with many unknown parameters that need to be inferred from noisy and sparse measurements. Here, we introduce systems-biology informed neural networks for parameter estimation by incorporating the system of ODEs into the neural networks. To complete the workflow of system identification, we also describe structural and practical identifiability analysis to analyze the identifiability of parameters. We use the ultridian endocrine model for glucose-insulin interaction as the example to demonstrate all these methods and their implementation.

The discovery of structure from time series data is a key problem in fields of study working with complex systems. Most identifiability results and learning algorithms assume the underlying dynamics to be discrete in time. Comparatively few, in contrast, explicitly define dependencies in infinitesimal intervals of time, independently of the scale of observation and of the regularity of sampling. In this paper, we consider score-based structure learning for the study of dynamical systems. We prove that for vector fields parameterized in a large class of neural networks, least squares optimization with adaptive regularization schemes consistently recovers directed graphs of local independencies in systems of stochastic differential equations. Using this insight, we propose a score-based learning algorithm based on penalized Neural Ordinary Differential Equations (modelling the mean process) that we show to be applicable to the general setting of irregularly-sampled multivariate time series and to outperform the state of the art across a range of dynamical systems.

Maximal parabolic $L^p$-regularity of linear parabolic equations on an evolving surface is shown by pulling back the problem to the initial surface and studying the maximal $L^p$-regularity on a fixed surface. By freezing the coefficients in the parabolic equations at a fixed time and utilizing a perturbation argument around the freezed time, it is shown that backward difference time discretizations of linear parabolic equations on an evolving surface along characteristic trajectories can preserve maximal $L^p$-regularity in the discrete setting. The result is applied to prove the stability and convergence of time discretizations of nonlinear parabolic equations on an evolving surface, with linearly implicit backward differentiation formulae characteristic trajectories of the surface, for general locally Lipschitz nonlinearities. The discrete maximal $L^p$-regularity is used to prove the boundedness and stability of numerical solutions in the $L^\infty(0,T;W^{1,\infty})$ norm, which is used to bound the nonlinear terms in the stability analysis. Optimal-order error estimates of time discretizations in the $L^\infty(0,T;W^{1,\infty})$ norm is obtained by combining the stability analysis with the consistency estimates.

Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. Variational integrators are an important class of geometric integrators. The general idea for those variational integrators is to discretize Hamilton's principle rather than the equations of motion in a way that preserves some of the invariants of the original system. In this paper we construct variational integrators with fixed time step for time-dependent Lagrangian systems modelling an important class of autonomous dissipative systems. These integrators are derived via a family of discrete Lagrangian functions each one for a fixed time-step. This allows to recover at each step on the set of discrete sequences the preservation properties of variational integrators for autonomous Lagrangian systems, such as symplecticity or backward error analysis for these systems. We also present a discrete Noether theorem for this class of systems. Applications of the results are shown for the problem of formation stabilization of multi-agent systems.

In this paper, we study the probabilistic stability analysis of a subclass of stochastic hybrid systems, called the Planar Probabilistic Piecewise Constant Derivative Systems (Planar PPCD), where the continuous dynamics is deterministic, constant rate and planar, the discrete switching between the modes is probabilistic and happens at boundary of the invariant regions, and the continuous states are not reset during switching. These aptly model piecewise linear behaviors of planar robots. Our main result is an exact algorithm for deciding absolute and almost sure stability of Planar PPCD under some mild assumptions on mutual reachability between the states and the presence of non-zero probability self-loops. Our main idea is to reduce the stability problems on planar PPCD into corresponding problems on Discrete Time Markov Chains with edge weights. Our experimental results on planar robots with faulty angle actuator demonstrate the practical feasibility of this approach.

A central question in multi-agent strategic games deals with learning the underlying utilities driving the agents' behaviour. Motivated by the increasing availability of large data-sets, we develop an unifying data-driven technique to estimate agents' utility functions from their observed behaviour, irrespective of whether the observations correspond to (Nash) equilibrium configurations or to action profile trajectories. Under standard assumptions on the parametrization of the utilities, the proposed inference method is computationally efficient and finds all the parameters that rationalize the observed behaviour best. We numerically validate our theoretical findings on the market share estimation problem under advertising competition, using historical data from the Coca-Cola Company and Pepsi Inc. duopoly.

Determining the proper level of details to develop and solve physical models is usually difficult when one encounters new engineering problems. Such difficulty comes from how to balance the time (simulation cost) and accuracy for the physical model simulation afterwards. We propose a framework for automatic development of a family of surrogate models of physical systems that provide flexible cost-accuracy tradeoffs to assist making such determinations. We present both a model-based and a data-driven strategy to generate surrogate models. The former starts from a high-fidelity model generated from first principles and applies a bottom-up model order reduction (MOR) that preserves stability and convergence while providing a priori error bounds, although the resulting reduced-order model may lose its interpretability. The latter generates interpretable surrogate models by fitting artificial constitutive relations to a presupposed topological structure using experimental or simulation data. For the latter, we use Tonti diagrams to systematically produce differential equations from the assumed topological structure using algebraic topological semantics that are common to various lumped-parameter models (LPM). The parameter for the constitutive relations are estimated using standard system identification algorithms. Our framework is compatible with various spatial discretization schemes for distributed parameter models (DPM), and can supports solving engineering problems in different domains of physics.

We propose and explore a new, general-purpose method for the implicit time integration of elastica. Key to our approach is the use of a mixed variational principle. In turn its finite element discretization leads to an efficient alternating projections solver with a superset of the desirable properties of many previous fast solution strategies. This framework fits a range of elastic constitutive models and remains stable across a wide span of timestep sizes, material parameters (including problems that are quasi-static and approximately rigid). It is efficient to evaluate and easily applicable to volume, surface, and rods models. We demonstrate the efficacy of our approach on a number of simulated examples across all three codomains.

This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the full model is approximated on local reduced spaces that are adapted in time using dynamical low-rank approximation techniques. The reduced dynamics is prescribed by approximating the symplectic projection of the Hamiltonian vector field in the tangent space to the local reduced space. This ensures that the canonical symplectic structure of the Hamiltonian dynamics is preserved during the reduction. In addition, accurate approximations with low-rank reduced solutions are obtained by allowing the dimension of the reduced space to change during the time evolution. Whenever the quality of the reduced solution, assessed via an error indicator, is not satisfactory, the reduced basis is augmented in the parameter direction that is worst approximated by the current basis. Extensive numerical tests involving wave interactions, nonlinear transport problems, and the Vlasov equation demonstrate the superior stability properties and considerable runtime speedups of the proposed method as compared to global and traditional reduced basis approaches.

We address the problem of output prediction, ie. designing a model for autonomous nonlinear systems capable of forecasting their future observations. We first define a general framework bringing together the necessary properties for the development of such an output predictor. In particular, we look at this problem from two different viewpoints, control theory and data-driven techniques (machine learning), and try to formulate it in a consistent way, reducing the gap between the two fields. Building on this formulation and problem definition, we propose a predictor structure based on the Kazantzis-Kravaris/Luenberger (KKL) observer and we show that KKL fits well into our general framework. Finally, we propose a constructive solution for this predictor that solely relies on a small set of trajectories measured from the system. Our experiments show that our solution allows to obtain an efficient predictor over a subset of the observation space.

北京阿比特科技有限公司