亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present streaming algorithms for the graph $k$-matching problem in both the insert-only and dynamic models. Our algorithms, with space complexity matching the best upper bounds, have optimal or near-optimal update time, significantly improving on previous results. More specifically, for the insert-only streaming model, we present a one-pass algorithm with optimal space complexity $O(k^2)$ and optimal update time $O(1)$, that with high probability computes a maximum weighted $k$-matching of a given weighted graph. The update time of our algorithm significantly improves the previous upper bound of $O(\log k)$, which was derived only for $k$-matching on unweighted graphs. For the dynamic streaming model, we present a one-pass algorithm that with high probability computes a maximum weighted $k$-matching in $O(Wk^2 \cdot \mbox{polylog}(n)$ space and with $O(\mbox{polylog}(n))$ update time, where $W$ is the number of distinct edge weights. Again the update time of our algorithm improves the previous upper bound of $O(k^2 \cdot \mbox{polylog}(n))$. This algorithm, when applied to unweighted graphs, gives a streaming algorithm on the dynamic model whose space and update time complexities are both near-optimal. Our results also imply a streaming approximation algorithm for maximum weighted $k$-matching whose space complexity matches the best known upper bound with a significantly improved update time.

相關內容

Non-autoregressive models have been widely studied in the Complete Information Scenario (CIS), in which the input has complete information of corresponding output. However, their explorations in the Incomplete Information Scenario (IIS) are extremely limited. Our analyses reveal that the IIS's incomplete input information will augment the inherent limitations of existing non-autoregressive models trained under Maximum Likelihood Estimation. In this paper, we propose for the IIS an Adversarial Non-autoregressive Transformer (ANT) which has two features: 1) Position-Aware Self-Modulation to provide more reasonable hidden representations, and 2) Dependency Feed Forward Network to strengthen its capacity in dependency modeling. We compare ANT with other mainstream models in the IIS and demonstrate that ANT can achieve comparable performance with much fewer decoding iterations. Furthermore, we show its great potential in various applications like latent interpolation and semi-supervised learning.

This study focuses on a novel task in text-to-image (T2I) generation, namely action customization. The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or even animals. Experimental results show that existing subject-driven customization methods fail to learn the representative characteristics of actions and struggle in decoupling actions from context features, including appearance. To overcome the preference for low-level features and the entanglement of high-level features, we propose an inversion-based method Action-Disentangled Identifier (ADI) to learn action-specific identifiers from the exemplar images. ADI first expands the semantic conditioning space by introducing layer-wise identifier tokens, thereby increasing the representational richness while distributing the inversion across different features. Then, to block the inversion of action-agnostic features, ADI extracts the gradient invariance from the constructed sample triples and masks the updates of irrelevant channels. To comprehensively evaluate the task, we present an ActionBench that includes a variety of actions, each accompanied by meticulously selected samples. Both quantitative and qualitative results show that our ADI outperforms existing baselines in action-customized T2I generation. Our project page is at //adi-t2i.github.io/ADI.

Given a vector dataset $\mathcal{X}$, a query vector $\vec{x}_q$, graph-based Approximate Nearest Neighbor Search (ANNS) aims to build a proximity graph (PG) as an index of $\mathcal{X}$ and approximately return vectors with minimum distances to $\vec{x}_q$ by searching over the PG index. It suffers from the large-scale $\mathcal{X}$ because a PG with full vectors is too large to fit into the memory, e.g., a billion-scale $\mathcal{X}$ in 128 dimensions would consume nearly 600 GB memory. To solve this, Product Quantization (PQ) integrated graph-based ANNS is proposed to reduce the memory usage, using smaller compact codes of quantized vectors in memory instead of the large original vectors. Existing PQ methods do not consider the important routing features of PG, resulting in low-quality quantized vectors that affect the ANNS's effectiveness. In this paper, we present an end-to-end Routing-guided learned Product Quantization (RPQ) for graph-based ANNS. It consists of (1) a \textit{differentiable quantizer} used to make the standard discrete PQ differentiable to suit for back-propagation of end-to-end learning, (2) a \textit{sampling-based feature extractor} used to extract neighborhood and routing features of a PG, and (3) a \textit{multi-feature joint training module} with two types of feature-aware losses to continuously optimize the differentiable quantizer. As a result, the inherent features of a PG would be embedded into the learned PQ, generating high-quality quantized vectors. Moreover, we integrate our RPQ with the state-of-the-art DiskANN and existing popular PGs to improve their performance. Comprehensive experiments on real-world large-scale datasets (from 1M to 1B) demonstrate RPQ's superiority, e.g., 1.7$\times$-4.2$\times$ improvement on QPS at the same recall@10 of 95\%.

Efficient resource allocation and scheduling algorithms are essential for various distributed applications, ranging from wireless networks and cloud computing platforms to autonomous multi-agent systems and swarm robotic networks. However, real-world environments are often plagued by uncertainties and noise, leading to sub-optimal performance and increased vulnerability of traditional algorithms. This paper addresses the challenge of robust resource allocation and scheduling in the presence of noise and disturbances. The proposed study introduces a novel sign-based dynamics for developing robust-to-noise algorithms distributed over a multi-agent network that can adaptively handle external disturbances. Leveraging concepts from convex optimization theory, control theory, and network science the framework establishes a principled approach to design algorithms that can maintain key properties such as resource-demand balance and constraint feasibility. Meanwhile, notions of uniform-connectivity and versatile networking conditions are also addressed.

Many existing adversarial attacks generate $L_p$-norm perturbations on image RGB space. Despite some achievements in transferability and attack success rate, the crafted adversarial examples are easily perceived by human eyes. Towards visual imperceptibility, some recent works explore unrestricted attacks without $L_p$-norm constraints, yet lacking transferability of attacking black-box models. In this work, we propose a novel imperceptible and transferable attack by leveraging both the generative and discriminative power of diffusion models. Specifically, instead of direct manipulation in pixel space, we craft perturbations in the latent space of diffusion models. Combined with well-designed content-preserving structures, we can generate human-insensitive perturbations embedded with semantic clues. For better transferability, we further "deceive" the diffusion model which can be viewed as an implicit recognition surrogate, by distracting its attention away from the target regions. To our knowledge, our proposed method, DiffAttack, is the first that introduces diffusion models into the adversarial attack field. Extensive experiments on various model structures, datasets, and defense methods have demonstrated the superiority of our attack over the existing attack methods.

We propose fast and practical quantum-inspired classical algorithms for solving linear systems. Specifically, given sampling and query access to a matrix $A\in\mathbb{R}^{m\times n}$ and a vector $b\in\mathbb{R}^m$, we propose classical algorithms that produce a data structure for the solution $x\in\mathbb{R}^{n}$ of the linear system $Ax=b$ with the ability to sample and query its entries. The resulting $x$ satisfies $\|x-A^{+}b\|\leq\epsilon\|A^{+}b\|$, where $\|\cdot\|$ is the spectral norm and $A^+$ is the Moore-Penrose inverse of $A$. Our algorithm has time complexity $\widetilde{O}(\kappa_F^4/\kappa\epsilon^2)$ in the general case, where $\kappa_{F} =\|A\|_F\|A^+\|$ and $\kappa=\|A\|\|A^+\|$ are condition numbers. Compared to the prior state-of-the-art result [Shao and Montanaro, arXiv:2103.10309v2], our algorithm achieves a polynomial speedup in condition numbers. When $A$ is $s$-sparse, our algorithm has complexity $\widetilde{O}(s \kappa\log(1/\epsilon))$, matching the quantum lower bound for solving linear systems in $\kappa$ and $1/\epsilon$ up to poly-logarithmic factors [Harrow and Kothari]. When $A$ is $s$-sparse and symmetric positive-definite, our algorithm has complexity $\widetilde{O}(s\sqrt{\kappa}\log(1/\epsilon))$. Technically, our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems, where we propose two new methods with speedups: quantum-inspired Kaczmarz method with momentum and quantum-inspired coordinate descent method with momentum. Their analysis exploits careful decomposition of the momentum transition matrix and the application of novel spectral norm concentration bounds for independent random matrices. Finally, we also conduct numerical experiments for our algorithms on both synthetic and real-world datasets, and the experimental results support our theoretical claims.

Treewidth (tw) is an important parameter that, when bounded, yields tractability for many problems. For example, graph problems expressible in Monadic Second Order (MSO) logic and QUANTIFIED SAT or, more generally, QUANTIFIED CSP, are FPT parameterized by the tw of the input's (primal) graph plus the length of the MSO-formula [Courcelle, Information & Computation 1990] and the quantifier rank [Chen, ECAI 2004], resp. The algorithms from these (meta-)results have running times whose dependence on tw is a tower of exponents. A conditional lower bound by Fichte et al. [LICS 2020] shows that, for QUANTIFIED SAT, the height of this tower is equal to the number of quantifier alternations. Lower bounds showing that at least double-exponential factors in the running time are necessary are rare: there are very few (for tw and vertex cover vc parameterizations) and they are for problems that are complete for #NP, $\Sigma_2^p$, $\Pi_2^p$, or higher levels of the polynomial hierarchy. We show, for the first time, that it is not necessary to go higher up in the polynomial hierarchy to obtain such lower bounds. We design a novel, yet simple versatile technique based on Sperner families to obtain such lower bounds and apply it to 3 problems: METRIC DIMENSION, STRONG METRIC DIMENSION, and GEODETIC SET. We prove that they do not admit $2^{2^{o(tw)}} \cdot n^{O(1)}$-time algorithms, even on bounded diameter graphs, unless the ETH fails. For STRONG METRIC DIMENSION, the lower bound holds even for vc. This is impossible for the other two as they admit $2^{O({vc}^2)} \cdot n^{O(1)}$-time algorithms. We show that, unless the ETH fails, they do not admit $2^{o({vc}^2)}\cdot n^{O(1)}$-time algorithms, which are also rare results. The lower bounds for the vc parameterizations also yield rare lower bounds on the vertex-kernel sizes of these problems. We complement our lower bounds with matching upper bounds.

We revisit the problem of estimating the profile (also known as the rarity) in the data stream model. Given a sequence of $m$ elements from a universe of size $n$, its profile is a vector $\phi$ whose $i$-th entry $\phi_i$ represents the number of distinct elements that appear in the stream exactly $i$ times. A classic paper by Datar and Muthukrishan from 2002 gave an algorithm which estimates any entry $\phi_i$ up to an additive error of $\pm \epsilon D$ using $O(1/\epsilon^2 (\log n + \log m))$ bits of space, where $D$ is the number of distinct elements in the stream. In this paper, we considerably improve on this result by designing an algorithm which simultaneously estimates many coordinates of the profile vector $\phi$ up to small overall error. We give an algorithm which, with constant probability, produces an estimated profile $\hat\phi$ with the following guarantees in terms of space and estimation error: - For any constant $\tau$, with $O(1 / \epsilon^2 + \log n)$ bits of space, $\sum_{i=1}^\tau |\phi_i - \hat\phi_i| \leq \epsilon D$. - With $O(1/ \epsilon^2\log (1/\epsilon) + \log n + \log \log m)$ bits of space, $\sum_{i=1}^m |\phi_i - \hat\phi_i| \leq \epsilon m$. In addition to bounding the error across multiple coordinates, our space bounds separate the terms that depend on $1/\epsilon$ and those that depend on $n$ and $m$. We prove matching lower bounds on space in both regimes. Application of our profile estimation algorithm gives estimates within error $\pm \epsilon D$ of several symmetric functions of frequencies in $O(1/\epsilon^2 + \log n)$ bits. This generalizes space-optimal algorithms for the distinct elements problems to other problems including estimating the Huber and Tukey losses as well as frequency cap statistics.

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司