Robust odometry estimation in perceptually degraded environments represents a key challenge in the field of robotics. In this paper, we propose a LiDAR-radar fusion method for robust odometry for adverse environment with LiDAR degeneracy. By comparing the LiDAR point cloud with the radar static point cloud obtained through preprocessing module, it is possible to identify instances of LiDAR degeneracy to overcome perceptual limits. We demonstrate the effectiveness of our method in challenging conditions such as dense smoke, showcasing its ability to reliably estimate odometry and identify/remove dynamic points prone to LiDAR degeneracy.
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully supervised methods. Addressing this, our study extends into semi-supervised learning for LiDAR semantic segmentation, leveraging the intrinsic spatial priors of driving scenes and multi-sensor complements to augment the efficacy of unlabeled datasets. We introduce LaserMix++, an evolved framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to further assist data-efficient learning. Our framework is tailored to enhance 3D scene consistency regularization by incorporating multi-modality, including 1) multi-modal LaserMix operation for fine-grained cross-sensor interactions; 2) camera-to-LiDAR feature distillation that enhances LiDAR feature learning; and 3) language-driven knowledge guidance generating auxiliary supervisions using open-vocabulary models. The versatility of LaserMix++ enables applications across LiDAR representations, establishing it as a universally applicable solution. Our framework is rigorously validated through theoretical analysis and extensive experiments on popular driving perception datasets. Results demonstrate that LaserMix++ markedly outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations and significantly improving the supervised-only baselines. This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
Stacked intelligent metasurfaces (SIM) is a revolutionary technology, which can outperform its single-layer counterparts by performing advanced signal processing relying on wave propagation. In this work, we exploit SIM to enable transmit precoding and receiver combining in holographic multiple-input multiple-output (HMIMO) communications, and we study the achievable rate by formulating a joint optimization problem of the SIM phase shifts at both sides of the transceiver and the covariance matrix of the transmitted signal. Notably, we propose its solution by means of an iterative optimization algorithm that relies on the projected gradient method, and accounts for all optimization parameters simultaneously. We also obtain the step size guaranteeing the convergence of the proposed algorithm. Simulation results provide fundamental insights such the performance improvements compared to the single-RIS counterpart and conventional MIMO system. Remarkably, the proposed algorithm results in the same achievable rate as the alternating optimization (AO) benchmark but with a less number of iterations.
Fine-tuning on task-specific datasets is a widely-embraced paradigm of harnessing the powerful capability of pretrained LLMs for various downstream tasks. Due to the popularity of LLMs fine-tuning and its accompanying privacy concerns, differentially private (DP) fine-tuning of pretrained LLMs has been widely used to safeguarding the privacy of task-specific datasets. Lying at the design core of DP LLM fine-tuning methods is the satisfactory tradeoff among privacy, utility, and scalability. Most existing methods build upon the seminal work of DP-SGD. Despite pushing the scalability of DP-SGD to its limit, DP-SGD-based fine-tuning methods are unfortunately limited by the inherent inefficiency of SGD. In this paper, we investigate the potential of DP zeroth-order methods for LLM pretraining, which avoids the scalability bottleneck of SGD by approximating the gradient with the more efficient zeroth-order gradient. Rather than treating the zeroth-order method as a drop-in replacement for SGD, this paper presents a comprehensive study both theoretically and empirically. First, we propose the stagewise DP zeroth-order method (DP-ZOSO) that dynamically schedules key hyperparameters. This design is grounded on the synergy between DP random perturbation and the gradient approximation error of the zeroth-order method, and its effect on fine-tuning trajectory. We provide theoretical analysis for both proposed methods. We conduct extensive empirical analysis on both encoder-only masked language model and decoder-only autoregressive language model, achieving impressive results in terms of scalability and utility (compared with DPZero, DP-ZOPO improves 4.5% on SST-5, 5.5% on MNLI with RoBERTa-Large and 9.2% on CB, 3.9% on BoolQ with OPT-2.7B when $\epsilon=4$).
3D occupancy, an advanced perception technology for driving scenarios, represents the entire scene without distinguishing between foreground and background by quantifying the physical space into a grid map. The widely adopted projection-first deformable attention, efficient in transforming image features into 3D representations, encounters challenges in aggregating multi-view features due to sensor deployment constraints. To address this issue, we propose our learning-first view attention mechanism for effective multi-view feature aggregation. Moreover, we showcase the scalability of our view attention across diverse multi-view 3D tasks, such as map construction and 3D object detection. Leveraging the proposed view attention as well as an additional multi-frame streaming temporal attention, we introduce ViewFormer, a vision-centric transformer-based framework for spatiotemporal feature aggregation. To further explore occupancy-level flow representation, we present FlowOcc3D, a benchmark built on top of existing high-quality datasets. Qualitative and quantitative analyses on this benchmark reveal the potential to represent fine-grained dynamic scenes. Extensive experiments show that our approach significantly outperforms prior state-of-the-art methods. The codes and benchmark will be released soon.
In real-world scenarios, objects often require repositioning and reorientation before they can be grasped, a process known as pre-grasp manipulation. Learning universal dexterous functional pre-grasp manipulation requires precise control over the relative position, orientation, and contact between the hand and object while generalizing to diverse dynamic scenarios with varying objects and goal poses. To address this challenge, we propose a teacher-student learning approach that utilizes a novel mutual reward, incentivizing agents to optimize three key criteria jointly. Additionally, we introduce a pipeline that employs a mixture-of-experts strategy to learn diverse manipulation policies, followed by a diffusion policy to capture complex action distributions from these experts. Our method achieves a success rate of 72.6\% across more than 30 object categories by leveraging extrinsic dexterity and adjusting from feedback.
Malware detection is a constant challenge in cybersecurity due to the rapid development of new attack techniques. Traditional signature-based approaches struggle to keep pace with the sheer volume of malware samples. Machine learning offers a promising solution, but faces issues of generalization to unseen samples and a lack of explanation for the instances identified as malware. However, human-understandable explanations are especially important in security-critical fields, where understanding model decisions is crucial for trust and legal compliance. While deep learning models excel at malware detection, their black-box nature hinders explainability. Conversely, interpretable models often fall short in performance. To bridge this gap in this application domain, we propose the use of Logic Explained Networks (LENs), which are a recently proposed class of interpretable neural networks providing explanations in the form of First-Order Logic (FOL) rules. This paper extends the application of LENs to the complex domain of malware detection, specifically using the large-scale EMBER dataset. In the experimental results we show that LENs achieve robustness that exceeds traditional interpretable methods and that are rivaling black-box models. Moreover, we introduce a tailored version of LENs that is shown to generate logic explanations with higher fidelity with respect to the model's predictions.
The acquisition of physical artifacts not only involves transferring existing information into the digital ecosystem but also generates information as a process itself, underscoring the importance of meticulous management of FAIR data and metadata. In addition, the diversity of objects within the cultural heritage domain is reflected in a multitude of descriptive models. The digitization process expands the opportunities for exchange and joint utilization, granted that the descriptive schemas are made interoperable in advance. To achieve this goal, we propose a replicable workflow for metadata schema crosswalks that facilitates the preservation and accessibility of cultural heritage in the digital ecosystem. This work presents a methodology for metadata generation and management in the case study of the digital twin of the temporary exhibition "The Other Renaissance - Ulisse Aldrovandi and the Wonders of the World". The workflow delineates a systematic, step-by-step transformation of tabular data into RDF format, to enhance Linked Open Data. The methodology adopts the RDF Mapping Language (RML) technology for converting data to RDF with a human contribution involvement. This last aspect entails an interaction between digital humanists and domain experts through surveys leading to the abstraction and reformulation of domain-specific knowledge, to be exploited in the process of formalizing and converting information.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.