We present a new approach for estimating parameters in rational ODE models from given (measured) time series data. In a typical existing approach, one first tries to make a good initial guess for the parameter values. Then, in a loop, the corresponding outputs are computed by solving the ODE numerically, followed by computing the error from the given time series data. If the error is small, the loop terminates and the parameter values are returned. Otherwise, heuristics/theories are used to possibly improve the guess and continue the loop. A downside of this approach is non-robustness, as there are no guarantees for the result of the loop iterations to be predictably close to the true parameter values. In this paper, we propose a new approach, which does not suffer from the above non-robustness. In particular, it does not require making good initial guesses for the parameter values. Instead, it uses differential algebra, interpolation of the data using rational functions, and multivariate polynomial system solving, and has a potential for a complete user control over the error of the estimation (the actual error analysis is left for the future research). We also compare the performance of the resulting software with several other estimation software packages.
The validation of global climate models is crucial to ensure the accuracy and efficacy of model output. We introduce the spherical convolutional Wasserstein distance to more comprehensively measure differences between climate models and reanalysis data. This new similarity measure accounts for spatial variability using convolutional projections and quantifies local differences in the distribution of climate variables. We apply this method to evaluate the historical model outputs of the Coupled Model Intercomparison Project (CMIP) members by comparing them to observational and reanalysis data products. Additionally, we investigate the progression from CMIP phase 5 to phase 6 and find modest improvements in the phase 6 models regarding their ability to produce realistic climatologies.
This paper introduces a Korean legal judgment prediction (LJP) dataset for insurance disputes. Successful LJP models on insurance disputes can benefit insurance companies and their customers. It can save both sides' time and money by allowing them to predict how the result would come out if they proceed to the dispute mediation process. As is often the case with low-resource languages, there is a limitation on the amount of data available for this specific task. To mitigate this issue, we investigate how one can achieve a good performance despite the limitation in data. In our experiment, we demonstrate that Sentence Transformer Fine-tuning (SetFit, Tunstall et al., 2022) is a good alternative to standard fine-tuning when training data are limited. The models fine-tuned with the SetFit approach on our data show similar performance to the Korean LJP benchmark models (Hwang et al., 2022) despite the much smaller data size.
Post-training Neural Network (NN) model compression is an attractive approach for deploying large, memory-consuming models on devices with limited memory resources. In this study, we investigate the rate-distortion tradeoff for NN model compression. First, we suggest a Rotation-Invariant Quantization (RIQ) technique that utilizes a single parameter to quantize the entire NN model, yielding a different rate at each layer, i.e., mixed-precision quantization. Then, we prove that our rotation-invariant approach is optimal in terms of compression. We rigorously evaluate RIQ and demonstrate its capabilities on various models and tasks. For example, RIQ facilitates $\times 19.4$ and $\times 52.9$ compression ratios on pre-trained VGG dense and pruned models, respectively, with $<0.4\%$ accuracy degradation. Code is available in \url{//github.com/ehaleva/RIQ}.
Learning with noisy labels aims to ensure model generalization given a label-corrupted training set. The sample selection strategy achieves promising performance by selecting a label-reliable subset for model training. In this paper, we empirically reveal that existing sample selection methods suffer from both data and training bias that are represented as imbalanced selected sets and accumulation errors in practice, respectively. However, only the training bias was handled in previous studies. To address this limitation, we propose a noIse-Tolerant Expert Model (ITEM) for debiased learning in sample selection. Specifically, to mitigate the training bias, we design a robust network architecture that integrates with multiple experts. Compared with the prevailing double-branch network, our network exhibits better performance of selection and prediction by ensembling these experts while training with fewer parameters. Meanwhile, to mitigate the data bias, we propose a mixed sampling strategy based on two weight-based data samplers. By training on the mixture of two class-discriminative mini-batches, the model mitigates the effect of the imbalanced training set while avoiding sparse representations that are easily caused by sampling strategies. Extensive experiments and analyses demonstrate the effectiveness of ITEM. Our code is available at this url \href{//github.com/1998v7/ITEM}{ITEM}.
The rapid growth of large-scale machine learning (ML) models has led numerous commercial companies to utilize ML models for generating predictive results to help business decision-making. As two primary components in traditional predictive pipelines, data processing, and model predictions often operate in separate execution environments, leading to redundant engineering and computations. Additionally, the diverging mathematical foundations of data processing and machine learning hinder cross-optimizations by combining these two components, thereby overlooking potential opportunities to expedite predictive pipelines. In this paper, we propose an operator fusing method based on GPU-accelerated linear algebraic evaluation of relational queries. Our method leverages linear algebra computation properties to merge operators in machine learning predictions and data processing, significantly accelerating predictive pipelines by up to 317x. We perform a complexity analysis to deliver quantitative insights into the advantages of operator fusion, considering various data and model dimensions. Furthermore, we extensively evaluate matrix multiplication query processing utilizing the widely-used Star Schema Benchmark. Through comprehensive evaluations, we demonstrate the effectiveness and potential of our approach in improving the efficiency of data processing and machine learning workloads on modern hardware.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.