Many real-world datasets are represented as tensors, i.e., multi-dimensional arrays of numerical values. Storing them without compression often requires substantial space, which grows exponentially with the order. While many tensor compression algorithms are available, many of them rely on strong data assumptions regarding its order, sparsity, rank, and smoothness. In this work, we propose TENSORCODEC, a lossy compression algorithm for general tensors that do not necessarily adhere to strong input data assumptions. TENSORCODEC incorporates three key ideas. The first idea is Neural Tensor-Train Decomposition (NTTD) where we integrate a recurrent neural network into Tensor-Train Decomposition to enhance its expressive power and alleviate the limitations imposed by the low-rank assumption. Another idea is to fold the input tensor into a higher-order tensor to reduce the space required by NTTD. Finally, the mode indices of the input tensor are reordered to reveal patterns that can be exploited by NTTD for improved approximation. Our analysis and experiments on 8 real-world datasets demonstrate that TENSORCODEC is (a) Concise: it gives up to 7.38x more compact compression than the best competitor with similar reconstruction error, (b) Accurate: given the same budget for compressed size, it yields up to 3.33x more accurate reconstruction than the best competitor, (c) Scalable: its empirical compression time is linear in the number of tensor entries, and it reconstructs each entry in logarithmic time. Our code and datasets are available at //github.com/kbrother/TensorCodec.
Submarine cables constitute the backbone of the Internet. However, these critical infrastructure components are vulnerable to several natural and man-made threats, and during failures, are difficult to repair in their remote oceanic environments. In spite of their crucial role, we have a limited understanding of the impact of submarine cable failures on global connectivity, particularly on the higher layers of the Internet. In this paper, we present Nautilus, a framework for cross-layer cartography of submarine cables and IP links. Using a corpus of public datasets and Internet cartographic techniques, Nautilus identifies IP links that are likely traversing submarine cables and maps them to one or more potential cables. Nautilus also gives each IP to cable assignment a prediction score that reflects the confidence in the mapping. Nautilus generates a mapping for 3.05 million and 1.43 million IPv4 and IPv6 links respectively, covering 91% of all active cables. In the absence of ground truth data, we validate Nautilus mapping using three techniques: analyzing past cable failures, using targeted traceroute measurements, and comparing with public network maps of two operators.
Homomorphic encryption (HE) is a privacy-preserving computation technique that enables computation on encrypted data. Today, the potential of HE remains largely unrealized as it is impractically slow, preventing it from being used in real applications. A major computational bottleneck in HE is the key-switching operation, accounting for approximately 70% of the overall HE execution time and involving a large amount of data for inputs, intermediates, and keys. Prior research has focused on hardware accelerators to improve HE performance, typically featuring large on-chip SRAMs and high off-chip bandwidth to deal with large scale data. In this paper, we present a novel approach to improve key-switching performance by rigorously analyzing its dataflow. Our primary goal is to optimize data reuse with limited on-chip memory to minimize off-chip data movement. We introduce three distinct dataflows: Max-Parallel (MP), Digit-Centric (DC), and Output-Centric (OC), each with unique scheduling approaches for key-switching computations. Through our analysis, we show how our proposed Output-Centric technique can effectively reuse data by significantly lowering the intermediate key-switching working set and alleviating the need for massive off-chip bandwidth. We thoroughly evaluate the three dataflows using the RPU, a recently published vector processor tailored for ring processing algorithms, which includes HE. This evaluation considers sweeps of bandwidth and computational throughput, and whether keys are buffered on-chip or streamed. With OC, we demonstrate up to 4.16x speedup over the MP dataflow and show how OC can save 16x on-chip SRAM by streaming keys for minimal performance penalty.
Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
With the exponential surge in diverse multi-modal data, traditional uni-modal retrieval methods struggle to meet the needs of users demanding access to data from various modalities. To address this, cross-modal retrieval has emerged, enabling interaction across modalities, facilitating semantic matching, and leveraging complementarity and consistency between different modal data. Although prior literature undertook a review of the cross-modal retrieval field, it exhibits numerous deficiencies pertaining to timeliness, taxonomy, and comprehensiveness. This paper conducts a comprehensive review of cross-modal retrieval's evolution, spanning from shallow statistical analysis techniques to vision-language pre-training models. Commencing with a comprehensive taxonomy grounded in machine learning paradigms, mechanisms, and models, the paper then delves deeply into the principles and architectures underpinning existing cross-modal retrieval methods. Furthermore, it offers an overview of widely used benchmarks, metrics, and performances. Lastly, the paper probes the prospects and challenges that confront contemporary cross-modal retrieval, while engaging in a discourse on potential directions for further progress in the field. To facilitate the research on cross-modal retrieval, we develop an open-source code repository at //github.com/BMC-SDNU/Cross-Modal-Retrieval.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.