Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
In real-world scenarios, objects often require repositioning and reorientation before they can be grasped, a process known as pre-grasp manipulation. Learning universal dexterous functional pre-grasp manipulation requires precise control over the relative position, orientation, and contact between the hand and object while generalizing to diverse dynamic scenarios with varying objects and goal poses. To address this challenge, we propose a teacher-student learning approach that utilizes a novel mutual reward, incentivizing agents to optimize three key criteria jointly. Additionally, we introduce a pipeline that employs a mixture-of-experts strategy to learn diverse manipulation policies, followed by a diffusion policy to capture complex action distributions from these experts. Our method achieves a success rate of 72.6\% across more than 30 object categories by leveraging extrinsic dexterity and adjusting from feedback.
Quantum low-density parity-check (QLDPC) codes are among the most promising candidates for future quantum error correction schemes. However, a limited number of short to moderate-length QLDPC codes have been designed and their decoding performance is sub-optimal with a quaternary belief propagation (BP) decoder due to unavoidable short cycles in their Tanner graphs. In this paper, we propose a novel joint code and decoder design for QLDPC codes. The constructed codes have a minimum distance of about the square root of the block length. In addition, it is, to the best of our knowledge, the first QLDPC code family where BP decoding is not impaired by short cycles of length 4. This is achieved by using an ensemble BP decoder mitigating the influence of assembled short cycles. We outline two code construction methods based on classical quasi-cyclic codes and finite geometry codes. Numerical results demonstrate outstanding decoding performance over depolarizing channels.
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation. Examples are the multi-depot vehicle routing problem (MDVRP), where customers are assigned to depots before delivery, and the capacitated location routing problem (CLRP), where the locations of depots should be determined first. A simple and straightforward approach for such hierarchical problems would be to separate the higher-level decisions from the complicated vehicle routing decisions. For each higher-level decision candidate, we may evaluate the underlying vehicle routing problems to assess the candidate. As this approach requires solving vehicle routing problems multiple times, it has been regarded as impractical in most cases. We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge and simplify algorithm developments. For each higher-level decision candidate, we predict the objective function values of the underlying vehicle routing problems using a pre-trained graph neural network without actually solving the routing problems. In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems. Our numerical experiments show that this simplified approach is effective and efficient in generating high-quality solutions for both MDVRP and CLRP and has the potential to expedite algorithm developments for complicated hierarchical problems. We provide computational results evaluated in the standard benchmark instances used in the literature.
The acquisition of physical artifacts not only involves transferring existing information into the digital ecosystem but also generates information as a process itself, underscoring the importance of meticulous management of FAIR data and metadata. In addition, the diversity of objects within the cultural heritage domain is reflected in a multitude of descriptive models. The digitization process expands the opportunities for exchange and joint utilization, granted that the descriptive schemas are made interoperable in advance. To achieve this goal, we propose a replicable workflow for metadata schema crosswalks that facilitates the preservation and accessibility of cultural heritage in the digital ecosystem. This work presents a methodology for metadata generation and management in the case study of the digital twin of the temporary exhibition "The Other Renaissance - Ulisse Aldrovandi and the Wonders of the World". The workflow delineates a systematic, step-by-step transformation of tabular data into RDF format, to enhance Linked Open Data. The methodology adopts the RDF Mapping Language (RML) technology for converting data to RDF with a human contribution involvement. This last aspect entails an interaction between digital humanists and domain experts through surveys leading to the abstraction and reformulation of domain-specific knowledge, to be exploited in the process of formalizing and converting information.
The diversity of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them a promising candidate for use in decision-making. However, they are currently limited by their inability to reliably provide outputs which are explainable and contestable. In this paper, we attempt to reconcile these strengths and weaknesses by introducing a method for supplementing LLMs with argumentative reasoning. Concretely, we introduce argumentative LLMs, a method utilising LLMs to construct argumentation frameworks, which then serve as the basis for formal reasoning in decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by the supplemented LLM may be naturally explained to, and contested by, humans. We demonstrate the effectiveness of argumentative LLMs experimentally in the decision-making task of claim verification. We obtain results that are competitive with, and in some cases surpass, comparable state-of-the-art techniques.
The increasing demand for autonomous vehicles has created a need for robust navigation systems that can also operate effectively in adverse weather conditions. Visual odometry is a technique used in these navigation systems, enabling the estimation of vehicle position and motion using input from onboard cameras. However, visual odometry accuracy can be significantly impacted in challenging weather conditions, such as heavy rain, snow, or fog. In this paper, we evaluate a range of visual odometry methods, including our DROID-SLAM based heuristic approach. Specifically, these algorithms are tested on both clear and rainy weather urban driving data to evaluate their robustness. We compiled a dataset comprising of a range of rainy weather conditions from different cities. This includes, the Oxford Robotcar dataset from Oxford, the 4Seasons dataset from Munich and an internal dataset collected in Singapore. We evaluated different visual odometry algorithms for both monocular and stereo camera setups using the Absolute Trajectory Error (ATE). From the range of approaches evaluated, our findings suggest that the Depth and Flow for Visual Odometry (DF-VO) algorithm with monocular setup performed the best for short range distances (< 500m) and our proposed DROID-SLAM based heuristic approach for the stereo setup performed relatively well for long-term localization. Both VO algorithms suggested a need for a more robust sensor fusion based approach for localization in rain.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Intent classification and slot filling are two essential tasks for natural language understanding. They often suffer from small-scale human-labeled training data, resulting in poor generalization capability, especially for rare words. Recently a new language representation model, BERT (Bidirectional Encoder Representations from Transformers), facilitates pre-training deep bidirectional representations on large-scale unlabeled corpora, and has created state-of-the-art models for a wide variety of natural language processing tasks after simple fine-tuning. However, there has not been much effort on exploring BERT for natural language understanding. In this work, we propose a joint intent classification and slot filling model based on BERT. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on several public benchmark datasets, compared to the attention-based recurrent neural network models and slot-gated models.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.