亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The study assesses the impact of cloud-based microservices architectures on application performance. Several aspects of performance evaluation are discussed, including response time, throughput, scalability, and reliability. This article examines the advantages and challenges of adopting a cloud-based approach. It explores potential bottlenecks and issues in a microservices architecture and presents optimization techniques. With the help of case studies and empirical studies, it compares cloud-based microservices architectures with traditional monolithic architectures. Furthermore, the paper examines the challenges of monitoring and troubleshooting distributed microservices. In conclusion, it emphasizes the importance of planning, designing, and testing during the adoption of cloud-based microservices.

相關內容

Large language models (LLMs) have triggered tremendous success to empower daily life by generative information, and the personalization of LLMs could further contribute to their applications due to better alignment with human intents. Towards personalized generative services, a collaborative cloud-edge methodology sounds promising, as it facilitates the effective orchestration of heterogeneous distributed communication and computing resources. In this article, after discussing the pros and cons of several candidate cloud-edge collaboration techniques, we put forward NetGPT to capably deploy appropriate LLMs at the edge and the cloud in accordance with their computing capacity. In addition, edge LLMs could efficiently leverage location-based information for personalized prompt completion, thus benefiting the interaction with cloud LLMs. After deploying representative open-source LLMs (e.g., GPT-2-base and LLaMA model) at the edge and the cloud, we present the feasibility of NetGPT on the basis of low-rank adaptation-based light-weight fine-tuning. Subsequently, we highlight substantial essential changes required for a native artificial intelligence (AI) network architecture towards NetGPT, with special emphasis on deeper integration of communications and computing resources and careful calibration of logical AI workflow. Furthermore, we demonstrate several by-product benefits of NetGPT, given edge LLM's astonishing capability to predict trends and infer intents, which possibly leads to a unified solution for intelligent network management \& orchestration. In a nutshell, we argue that NetGPT is a promising native-AI network architecture beyond provisioning personalized generative services.

The upcoming Sixth Generation (6G) mobile communications system envisions supporting a variety of use cases with differing characteristics, e.g., very low to extremely high data rates, diverse latency needs, ultra massive connectivity, sustainable communications, ultra-wide coverage etc. To accommodate these diverse use cases, the 6G system architecture needs to be scalable, modular, and flexible; both in its user plane and the control plane. In this paper, we identify some limitations of the existing Fifth Generation System (5GS) architecture, especially that of its control plane. Further, we propose a novel architecture for the 6G System (6GS) employing Software Defined Networking (SDN) technology to address these limitations of the control plane. The control plane in existing 5GS supports two different categories of functionalities handling end user signalling (e.g., user registration, authentication) and control of user plane functions. We propose to move the end-user signalling functionality out of the mobile network control plane and treat it as user service, i.e., as payload or data. This proposal results in an evolved service-driven architecture for mobile networks bringing increased simplicity, modularity, scalability, flexibility and security to its control plane. The proposed architecture can also support service specific signalling support, if needed, making it better suited for diverse 6GS use cases. To demonstrate the advantages of the proposed architecture, we also compare its performance with the 5GS using a process algebra-based simulation tool.

Many small to large organizations have adopted the Microservices Architecture (MSA) style to develop and deliver their core businesses. Despite the popularity of MSA in the software industry, there is a limited evidence-based and thorough understanding of the types of issues (e.g., errors, faults, failures, and bugs) that microservices system developers experience, the causes of the issues, and the solutions as potential fixing strategies to address the issues. To ameliorate this gap, we conducted a mixed-methods empirical study that collected data from 2,641 issues from the issue tracking systems of 15 open-source microservices systems on GitHub, 15 interviews, and an online survey completed by 150 practitioners from 42 countries across 6 continents. Our analysis led to comprehensive taxonomies for the issues, causes, and solutions. The findings of this study inform that Technical Debt, Continuous Integration and Delivery, Exception Handling, Service Execution and Communication, and Security are the most dominant issues in microservices systems. Furthermore, General Programming Errors, Missing Features and Artifacts, and Invalid Configuration and Communication are the main causes behind the issues. Finally, we found 177 types of solutions that can be applied to fix the identified issues. Based on our study results, we formulated future research directions that could help researchers and practitioners to engineer emergent and next-generation microservices systems.

The heterogeneous, geographically distributed infrastructure of fog computing poses challenges in data replication, data distribution, and data mobility for fog applications. Fog computing is still missing the necessary abstractions to manage application data, and fog application developers need to re-implement data management for every new piece of software. Proposed solutions are limited to certain application domains, such as the IoT, are not flexible in regard to network topology, or do not provide the means for applications to control the movement of their data. In this paper, we present FReD, a data replication middleware for the fog. FReD serves as a building block for configurable fog data distribution and enables low-latency, high-bandwidth, and privacy-sensitive applications. FReD is a common data access interface across heterogeneous infrastructure and network topologies, provides transparent and controllable data distribution, and can be integrated with applications from different domains. To evaluate our approach, we present a prototype implementation of FReD and show the benefits of developing with FReD using three case studies of fog computing applications.

Predicting where a person is looking is a complex task, requiring to understand not only the person's gaze and scene content, but also the 3D scene structure and the person's situation (are they manipulating? interacting or observing others? attentive?) to detect obstructions in the line of sight or apply attention priors that humans typically have when observing others. In this paper, we hypothesize that identifying and leveraging such priors can be better achieved through the exploitation of explicitly derived multimodal cues such as depth and pose. We thus propose a modular multimodal architecture allowing to combine these cues using an attention mechanism. The architecture can naturally be exploited in privacy-sensitive situations such as surveillance and health, where personally identifiable information cannot be released. We perform extensive experiments on the GazeFollow and VideoAttentionTarget public datasets, obtaining state-of-the-art performance and demonstrating very competitive results in the privacy setting case.

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

北京阿比特科技有限公司