亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the numerical implementation of the transparent boundary condition (TBC) and its various approximations for the free Schr\"odinger equation on a rectangular computational domain. In particular, we consider the exact TBC and its spatially local approximation under high frequency assumption along with an appropriate corner condition. For the spatial discretization, we use a Legendre-Galerkin spectral method where Lobatto polynomials serve as the basis. Within variational formalism, we first arrive at the time-continuous dynamical system using spatially discrete form of the initial boundary-value problem incorporating the boundary conditions. This dynamical system is then discretized using various time-stepping methods, namely, the backward-differentiation formula of order 1 and 2 (i.e., BDF1 and BDF2, respectively) and the trapezoidal rule (TR) to obtain a fully discrete system. Next, we extend this approach to the novel Pad\'e based implementation of the TBC presented by Yadav and Vaibhav [arXiv:2403.07787(2024)]. Finally, several numerical tests are presented to demonstrate the effectiveness of the boundary maps (incorporating the corner conditions) where we study the stability and convergence behavior empirically.

相關內容

In this paper we consider the numerical solution of fractional terminal value problems (FDE-TVPs). In particular, the proposed procedure uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems (FDE-IVPs), able to produce spectrally accurate solutions of FDE problems. Some numerical tests are reported to make evidence of its effectiveness.

In this paper, we effectively solve the inverse source problem of the fractional Poisson equation using MC-fPINNs. We construct two neural networks $ u_{NN}(x;\theta )$ and $f_{NN}(x;\psi)$ to approximate the solution $u^{*}(x)$ and the forcing term $f^{*}(x)$ of the fractional Poisson equation. To optimize these two neural networks, we use the Monte Carlo sampling method mentioned in MC-fPINNs and define a new loss function combining measurement data and the underlying physical model. Meanwhile, we present a comprehensive error analysis for this method, along with a prior rule to select the appropriate parameters of neural networks. Several numerical examples are given to demonstrate the great precision and robustness of this method in solving high-dimensional problems up to 10D, with various fractional order $\alpha$ and different noise levels of the measurement data ranging from 1$\%$ to 10$\%$.

This paper addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach. This work so expands the application scope of secondorder algorithms in stochastic optimization.

This paper proposes a second-order accurate direct Eulerian generalized Riemann problem (GRP) scheme for the ten-moment Gaussian closure equations with source terms. The generalized Riemann invariants associated with the rarefaction waves, the contact discontinuity and the shear waves are given, and the 1D exact Riemann solver is obtained. After that, the generalized Riemann invariants and the Rankine-Hugoniot jump conditions are directly used to resolve the left and right nonlinear waves (rarefaction wave and shock wave) of the local GRP in Eulerian formulation, and then the 1D direct Eulerian GRP scheme is derived. They are much more complicated, technical and nontrivial due to more physical variables and elementary waves. Some 1D and 2D numerical experiments are presented to check the accuracy and high resolution of the proposed GRP schemes, where the 2D direct Eulerian GRP scheme is given by using the Strang splitting method for simplicity. It should be emphasized that several examples of 2D Riemann problems are constructed for the first time.

This paper addresses the sufficient and necessary conditions for constructing $C^r$ conforming finite element spaces from a superspline spaces on general simplicial triangulations. We introduce the concept of extendability for the pre-element spaces, which encompasses both the superspline space and the finite element space. By examining the extendability condition for both types of spaces, we provide an answer to the conditions regarding the construction. A corollary of our results is that constructing $C^r$ conforming elements in $d$ dimensions should in general require an extra $C^{2^{s}r}$ continuity on $s$-codimensional simplices, and the polynomial degree is at least $(2^d r + 1)$.

A new, more efficient, numerical method for the SDOF problem is presented. Its construction is based on the weak form of the equation of motion, as obtained in part I of the paper, using piece-wise polynomial functions as interpolation functions. The approximation rate can be arbitrarily high, proportional to the degree of the interpolation functions, tempered only by numerical instability. Moreover, the mechanical energy of the system is conserved. Consequently, all significant drawbacks of existing algorithms, such as the limitations imposed by the Dahlqvist Barrier theorem and the need for introduction of numerical damping, have been overcome.

Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $ n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.

We propose a new full discretization of the Biot's equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters. We further construct an interpolant showing how the error decays for smooth solutions.

In this paper, we propose a novel shape optimization approach for the source identification of elliptic equations. This identification problem arises from two application backgrounds: actuator placement in PDE-constrained optimal controls and the regularized least-squares formulation of source identifications. The optimization problem seeks both the source strength and its support. By eliminating the variable associated with the source strength, we reduce the problem to a shape optimization problem for a coupled elliptic system, known as the first-order optimality system. As a model problem, we derive the shape derivative for the regularized least-squares formulation of the inverse source problem and propose a gradient descent shape optimization algorithm, implemented using the level-set method. Several numerical experiments are presented to demonstrate the efficiency of our proposed algorithms.

We establish necessary and sufficient conditions for invertibility of symmetric three-by-three block matrices having a double saddle-point structure \fb{that guarantee the unique solvability of double saddle-point systems}. We consider various scenarios, including the case where all diagonal blocks are allowed to be rank deficient. Under certain conditions related to the nullity of the blocks and intersections of their kernels, an explicit formula for the inverse is derived.

北京阿比特科技有限公司