亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing contrastive language-image pre-training aims to learn a joint representation by matching abundant image-text pairs. However, the number of image-text pairs in medical datasets is usually orders of magnitude smaller than that in natural datasets. Besides, medical image-text pairs often involve numerous complex fine-grained correspondences. This paper aims to enhance the data efficiency by introducing multiple-to-multiple local relationship modeling to capture denser supervisions. More specifically, we propose a Medical Language-Image Pre-training (MLIP) framework, which exploits the limited image-text medical data more efficiently through patch-sentence matching. Furthermore, we introduce a masked contrastive learning strategy with semantic integrity estimation to reduce redundancy in images while preserving the underlying semantics. Our evaluation results show that MLIP outperforms previous work in zero/few-shot classification and few-shot segmentation tasks by a large margin.

相關內容

Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there is only a single reward for an entire output. This sparsity of rewards can lead to inefficient and unstable learning. To address this challenge, our paper introduces an novel framework that utilizes the critique capability of Large Language Models (LLMs) to produce intermediate-step rewards during RL training. Our method involves coupling a policy model with a critic language model, which is responsible for providing comprehensive feedback of each part of the output. This feedback is then translated into token or span-level rewards that can be used to guide the RL training process. We investigate this approach under two different settings: one where the policy model is smaller and is paired with a more powerful critic model, and another where a single language model fulfills both roles. We assess our approach on three text generation tasks: sentiment control, language model detoxification, and summarization. Experimental results show that incorporating artificial intrinsic rewards significantly improve both sample efficiency and the overall performance of the policy model, supported by both automatic and human evaluation.

Lipreading involves using visual data to recognize spoken words by analyzing the movements of the lips and surrounding area. It is a hot research topic with many potential applications, such as human-machine interaction and enhancing audio speech recognition. Recent deep-learning based works aim to integrate visual features extracted from the mouth region with landmark points on the lip contours. However, employing a simple combination method such as concatenation may not be the most effective approach to get the optimal feature vector. To address this challenge, firstly, we propose a cross-attention fusion-based approach for large lexicon Arabic vocabulary to predict spoken words in videos. Our method leverages the power of cross-attention networks to efficiently integrate visual and geometric features computed on the mouth region. Secondly, we introduce the first large-scale Lip Reading in the Wild for Arabic (LRW-AR) dataset containing 20,000 videos for 100-word classes, uttered by 36 speakers. The experimental results obtained on LRW-AR and ArabicVisual databases showed the effectiveness and robustness of the proposed approach in recognizing Arabic words. Our work provides insights into the feasibility and effectiveness of applying lipreading techniques to the Arabic language, opening doors for further research in this field. Link to the project page: //crns-smartvision.github.io/lrwar

Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, there is still much to learn about how well LLMs understand structured data, such as tables. Although tables can be used as input to LLMs with serialization, there is a lack of comprehensive studies that examine whether LLMs can truly comprehend such data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities (SUC) of LLMs. The benchmark we create includes seven tasks, each with its own unique challenges, e.g., cell lookup, row retrieval, and size detection. We perform a series of evaluations on GPT-3.5 and GPT-4. We find that performance varied depending on several input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose \textit{self-augmentation} for effective structural prompting, such as critical value / range identification using internal knowledge of LLMs. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, e.g., TabFact($\uparrow2.31\%$), HybridQA($\uparrow2.13\%$), SQA($\uparrow2.72\%$), Feverous($\uparrow0.84\%$), and ToTTo($\uparrow5.68\%$). We believe that our open source benchmark and proposed prompting methods can serve as a simple yet generic selection for future research.

Zero-shot link prediction (ZSLP) on knowledge graphs aims at automatically identifying relations between given entities. Existing methods primarily employ auxiliary information to predict tail entity given head entity and its relation, yet face challenges due to the occasional unavailability of such detailed information and the inherent simplicity of predicting tail entities based on semantic similarities. Even though Large Language Models (LLMs) offer a promising solution to predict unobserved relations between the head and tail entity in a zero-shot manner, their performance is still restricted due to the inability to leverage all the (exponentially many) paths' information between two entities, which are critical in collectively indicating their relation types. To address this, in this work, we introduce a Condensed Transition Graph Framework for Zero-Shot Link Prediction (CTLP), which encodes all the paths' information in linear time complexity to predict unseen relations between entities, attaining both efficiency and information preservation. Specifically, we design a condensed transition graph encoder with theoretical guarantees on its coverage, expressiveness, and efficiency. It is learned by a transition graph contrastive learning strategy. Subsequently, we design a soft instruction tuning to learn and map the all-path embedding to the input of LLMs. Experimental results show that our proposed CTLP method achieves state-of-the-art performance on three standard ZSLP datasets

The drastic variation of motion in spatial and temporal dimensions makes the video prediction task extremely challenging. Existing RNN models obtain higher performance by deepening or widening the model. They obtain the multi-scale features of the video only by stacking layers, which is inefficient and brings unbearable training costs (such as memory, FLOPs, and training time). Different from them, this paper proposes a spatiotemporal multi-scale model called MS-LSTM wholly from a multi-scale perspective. On the basis of stacked layers, MS-LSTM incorporates two additional efficient multi-scale designs to fully capture spatiotemporal context information. Concretely, we employ LSTMs with mirrored pyramid structures to construct spatial multi-scale representations and LSTMs with different convolution kernels to construct temporal multi-scale representations. We theoretically analyze the training cost and performance of MS-LSTM and its components. Detailed comparison experiments with twelve baseline models on four video datasets show that MS-LSTM has better performance but lower training costs.

Several recent deep learning (DL) based techniques perform considerably well on image-based multilingual text detection. However, their performance relies heavily on the availability and quality of training data. There are numerous types of page-level document images consisting of information in several modalities, languages, fonts, and layouts. This makes text detection a challenging problem in the field of computer vision (CV), especially for low-resource or handwritten languages. Furthermore, there is a scarcity of word-level labeled data for text detection, especially for multilingual settings and Indian scripts that incorporate both printed and handwritten text. Conventionally, Indian script text detection requires training a DL model on plenty of labeled data, but to the best of our knowledge, no relevant datasets are available. Manual annotation of such data requires a lot of time, effort, and expertise. In order to solve this problem, we propose TEXTRON, a Data Programming-based approach, where users can plug various text detection methods into a weak supervision-based learning framework. One can view this approach to multilingual text detection as an ensemble of different CV-based techniques and DL approaches. TEXTRON can leverage the predictions of DL models pre-trained on a significant amount of language data in conjunction with CV-based methods to improve text detection in other languages. We demonstrate that TEXTRON can improve the detection performance for documents written in Indian languages, despite the absence of corresponding labeled data. Further, through extensive experimentation, we show improvement brought about by our approach over the current State-of-the-art (SOTA) models, especially for handwritten Devanagari text. Code and dataset has been made available at //github.com/IITB-LEAP-OCR/TEXTRON

Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

北京阿比特科技有限公司