Unmeasured confounding bias is among the largest threats to the validity of observational studies. Although sensitivity analyses and various study designs have been proposed to address this issue, they do not leverage the growing availability of auxiliary data accessible through open data platforms. Using negative controls has been introduced in the causal inference literature as a promising approach to account for unmeasured confounding bias. In this paper, we develop a Bayesian nonparametric method to estimate a causal exposure-response function (CERF). This estimation method effectively utilizes auxiliary information from negative control variables to adjust for unmeasured confounding completely. We model the CERF as a mixture of linear models. This strategy offers the dual advantage of capturing the potential nonlinear shape of CERFs while maintaining computational efficiency. Additionally, it leverages closed-form results that hold under the linear model assumption. We assess the performance of our method through simulation studies. The results demonstrate the method's ability to accurately recover the true shape of the CERF in the presence of unmeasured confounding. To showcase the practical utility of our approach, we apply it to adjust for a potential unmeasured confounder when evaluating the relationship between long-term exposure to ambient $PM_{2.5}$ and cardiovascular hospitalization rates among the elderly in the continental U.S. We implement our estimation procedure in open-source software to ensure transparency and reproducibility and make our code publicly available.
This paper proposes a new method for differentiating through optimal trajectories arising from non-convex, constrained discrete-time optimal control (COC) problems using the implicit function theorem (IFT). Previous works solve a differential Karush-Kuhn-Tucker (KKT) system for the trajectory derivative, and achieve this efficiently by solving an auxiliary Linear Quadratic Regulator (LQR) problem. In contrast, we directly evaluate the matrix equations which arise from applying variable elimination on the Lagrange multiplier terms in the (differential) KKT system. By appropriately accounting for the structure of the terms within the resulting equations, we show that the trajectory derivatives scale linearly with the number of timesteps. Furthermore, our approach allows for easy parallelization, significantly improved scalability with model size, direct computation of vector-Jacobian products and improved numerical stability compared to prior works. As an additional contribution, we unify prior works, addressing claims that computing trajectory derivatives using IFT scales quadratically with the number of timesteps. We evaluate our method on a both synthetic benchmark and four challenging, learning from demonstration benchmarks including a 6-DoF maneuvering quadrotor and 6-DoF rocket powered landing.
In autonomous driving, deep learning enabled motion prediction is a popular topic. A critical gap in traditional motion prediction methodologies lies in ensuring equivariance under Euclidean geometric transformations and maintaining invariant interaction relationships. This research introduces a groundbreaking solution by employing EqMotion, a theoretically geometric equivariant and interaction invariant motion prediction model for particles and humans, plus integrating agent-equivariant high-definition (HD) map features for context aware motion prediction in autonomous driving. The use of EqMotion as backbone marks a significant departure from existing methods by rigorously ensuring motion equivariance and interaction invariance. Equivariance here implies that an output motion must be equally transformed under the same Euclidean transformation as an input motion, while interaction invariance preserves the manner in which agents interact despite transformations. These properties make the network robust to arbitrary Euclidean transformations and contribute to more accurate prediction. In addition, we introduce an equivariant method to process the HD map to enrich the spatial understanding of the network while preserving the overall network equivariance property. By applying these technologies, our model is able to achieve high prediction accuracy while maintain a lightweight design and efficient data utilization.
Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.
Models for conversational question answering (ConvQA) over knowledge graphs (KGs) are usually trained and tested on benchmarks of gold QA pairs. This implies that training is limited to surface forms seen in the respective datasets, and evaluation is on a small set of held-out questions. Through our proposed framework REIGN, we take several steps to remedy this restricted learning setup. First, we systematically generate reformulations of training questions to increase robustness of models to surface form variations. This is a particularly challenging problem, given the incomplete nature of such questions. Second, we guide ConvQA models towards higher performance by feeding it only those reformulations that help improve their answering quality, using deep reinforcement learning. Third, we demonstrate the viability of training major model components on one benchmark and applying them zero-shot to another. Finally, for a rigorous evaluation of robustness for trained models, we use and release large numbers of diverse reformulations generated by prompting GPT for benchmark test sets (resulting in 20x increase in sizes). Our findings show that ConvQA models with robust training via reformulations, significantly outperform those with standard training from gold QA pairs only.
Scientific imaging problems are often severely ill-posed, and hence have significant intrinsic uncertainty. Accurately quantifying the uncertainty in the solutions to such problems is therefore critical for the rigorous interpretation of experimental results as well as for reliably using the reconstructed images as scientific evidence. Unfortunately, existing imaging methods are unable to quantify the uncertainty in the reconstructed images in a manner that is robust to experiment replications. This paper presents a new uncertainty quantification methodology based on an equivariant formulation of the parametric bootstrap algorithm that leverages symmetries and invariance properties commonly encountered in imaging problems. Additionally, the proposed methodology is general and can be easily applied with any image reconstruction technique, including unsupervised training strategies that can be trained from observed data alone, thus enabling uncertainty quantification in situations where there is no ground truth data available. We demonstrate the proposed approach with a series of numerical experiments and through comparisons with alternative uncertainty quantification strategies from the state-of-the-art, such as Bayesian strategies involving score-based diffusion models and Langevin samplers. In all our experiments, the proposed method delivers remarkably accurate high-dimensional confidence regions and outperforms the competing approaches in terms of estimation accuracy, uncertainty quantification accuracy, and computing time.
Lifelong sequence generation (LSG), a problem in continual learning, aims to continually train a model on a sequence of generation tasks to learn constantly emerging new generation patterns while avoiding the forgetting of previous knowledge. Existing LSG methods mainly focus on maintaining old knowledge while paying little attention to knowledge transfer across tasks. In contrast, humans can better learn new tasks by leveraging previously acquired knowledge from similar tasks. Inspired by the learning paradigm of humans, we propose Dynamic Module Expansion and Adaptation (DMEA), which enables the model to dynamically determine the architecture for acquiring new knowledge based on task correlation and select the most similar previous tasks to facilitate adaptation to new tasks. In addition, as the learning process can easily be biased towards the current task which might cause more severe forgetting of previously learned knowledge, we propose dynamic gradient scaling to balance the learning of the current task and replayed tasks. With extensive experiments, we demonstrate that DMEA can consistently outperform existing methods in different LSG settings.
Solving complex planning problems has been a long-standing challenge in computer science. Learning-based subgoal search methods have shown promise in tackling these problems, but they often suffer from a lack of completeness guarantees, meaning that they may fail to find a solution even if one exists. In this paper, we propose an efficient approach to augment a subgoal search method to achieve completeness in discrete action spaces. Specifically, we augment the high-level search with low-level actions to execute a multi-level (hybrid) search, which we call complete subgoal search. This solution achieves the best of both worlds: the practical efficiency of high-level search and the completeness of low-level search. We apply the proposed search method to a recently proposed subgoal search algorithm and evaluate the algorithm trained on offline data on complex planning problems. We demonstrate that our complete subgoal search not only guarantees completeness but can even improve performance in terms of search expansions for instances that the high-level could solve without low-level augmentations. Our approach makes it possible to apply subgoal-level planning for systems where completeness is a critical requirement.
This paper proposes the use of causal modeling to detect and mitigate algorithmic bias. We provide a brief description of causal modeling and a general overview of our approach. We then use the Adult dataset, which is available for download from the UC Irvine Machine Learning Repository, to develop (1) a prediction model, which is treated as a black box, and (2) a causal model for bias mitigation. In this paper, we focus on gender bias and the problem of binary classification. We show that gender bias in the prediction model is statistically significant at the 0.05 level. We demonstrate the effectiveness of the causal model in mitigating gender bias by cross-validation. Furthermore, we show that the overall classification accuracy is improved slightly. Our novel approach is intuitive, easy-to-use, and can be implemented using existing statistical software tools such as "lavaan" in R. Hence, it enhances explainability and promotes trust.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.