In the field of phase change phenomena, the lack of accessible and diverse datasets suitable for machine learning (ML) training poses a significant challenge. Existing experimental datasets are often restricted, with limited availability and sparse ground truth data, impeding our understanding of this complex multiphysics phenomena. To bridge this gap, we present the BubbleML Dataset \footnote{\label{git_dataset}\url{//github.com/HPCForge/BubbleML}} which leverages physics-driven simulations to provide accurate ground truth information for various boiling scenarios, encompassing nucleate pool boiling, flow boiling, and sub-cooled boiling. This extensive dataset covers a wide range of parameters, including varying gravity conditions, flow rates, sub-cooling levels, and wall superheat, comprising 79 simulations. BubbleML is validated against experimental observations and trends, establishing it as an invaluable resource for ML research. Furthermore, we showcase its potential to facilitate exploration of diverse downstream tasks by introducing two benchmarks: (a) optical flow analysis to capture bubble dynamics, and (b) operator networks for learning temperature dynamics. The BubbleML dataset and its benchmarks serve as a catalyst for advancements in ML-driven research on multiphysics phase change phenomena, enabling the development and comparison of state-of-the-art techniques and models.
Continual learning (CL) has remained a persistent challenge for deep neural networks due to catastrophic forgetting (CF) of previously learned tasks. Several techniques such as weight regularization, experience rehearsal, and parameter isolation have been proposed to alleviate CF. Despite their relative success, these research directions have predominantly remained orthogonal and suffer from several shortcomings, while missing out on the advantages of competing strategies. On the contrary, the brain continually learns, accommodates, and transfers knowledge across tasks by simultaneously leveraging several neurophysiological processes, including neurogenesis, active forgetting, neuromodulation, metaplasticity, experience rehearsal, and context-dependent gating, rarely resulting in CF. Inspired by how the brain exploits multiple mechanisms concurrently, we propose TriRE, a novel CL paradigm that encompasses retaining the most prominent neurons for each task, revising and solidifying the extracted knowledge of current and past tasks, and actively promoting less active neurons for subsequent tasks through rewinding and relearning. Across CL settings, TriRE significantly reduces task interference and surpasses different CL approaches considered in isolation.
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.
Machine unlearning, the study of efficiently removing the impact of specific training points on the trained model, has garnered increased attention of late, driven by the need to comply with privacy regulations like the \emph{Right to be Forgotten}. Although unlearning is particularly relevant for LLMs in light of the copyright issues they raise, achieving precise unlearning is computationally infeasible for very large models. To this end, recent work has proposed several algorithms which approximate the removal of training data without retraining the model. These algorithms crucially rely on access to the model parameters in order to update them, an assumption that may not hold in practice due to computational constraints or when the LLM is accessed via API. In this work, we propose a new class of unlearning methods for LLMs we call ``In-Context Unlearning'', providing inputs in context and without having to update model parameters. To unlearn a particular training instance, we provide the instance alongside a flipped label and additional correctly labelled instances which are prepended as inputs to the LLM at inference time. Our experimental results demonstrate that these contexts effectively remove specific information from the training set while maintaining performance levels that are competitive with (or in some cases exceed) state-of-the-art unlearning methods that require access to the LLM parameters.
The Central Pattern Generator (CPG) is adept at generating rhythmic gait patterns characterized by consistent timing and adequate foot clearance. Yet, its open-loop configuration often compromises the system's control performance in response to environmental variations. On the other hand, Reinforcement Learning (RL), celebrated for its model-free properties, has gained significant traction in robotics due to its inherent adaptability and robustness. However, initiating traditional RL approaches from the ground up presents computational challenges and a heightened risk of converging to suboptimal local minima. In this paper, we propose an innovative quadruped locomotion framework, SYNLOCO, by synthesizing CPG and RL that can ingeniously integrate the strengths of both methods, enabling the development of a locomotion controller that is both stable and natural. Furthermore, we introduce a set of performance-driven reward metrics that augment the learning of locomotion control. To optimize the learning trajectory of SYNLOCO, a two-phased training strategy is presented. Our empirical evaluation, conducted on a Unitree GO1 robot under varied conditions--including distinct velocities, terrains, and payload capacities--showcases SYNLOCO's ability to produce consistent and clear-footed gaits across diverse scenarios. The developed controller exhibits resilience against substantial parameter variations, underscoring its potential for robust real-world applications.
While reinforcement learning (RL) algorithms have been successfully applied to numerous tasks, their reliance on neural networks makes their behavior difficult to understand and trust. Counterfactual explanations are human-friendly explanations that offer users actionable advice on how to alter the model inputs to achieve the desired output from a black-box system. However, current approaches to generating counterfactuals in RL ignore the stochastic and sequential nature of RL tasks and can produce counterfactuals that are difficult to obtain or do not deliver the desired outcome. In this work, we propose RACCER, the first RL-specific approach to generating counterfactual explanations for the behavior of RL agents. We first propose and implement a set of RL-specific counterfactual properties that ensure easily reachable counterfactuals with highly probable desired outcomes. We use a heuristic tree search of the agent's execution trajectories to find the most suitable counterfactuals based on the defined properties. We evaluate RACCER in two tasks as well as conduct a user study to show that RL-specific counterfactuals help users better understand agents' behavior compared to the current state-of-the-art approaches.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.