亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the counterfactual outcome of treatment is essential for decision-making in public health and clinical science, among others. Often, treatments are administered in a sequential, time-varying manner, leading to an exponentially increased number of possible counterfactual outcomes. Furthermore, in modern applications, the outcomes are high-dimensional and conventional average treatment effect estimation fails to capture disparities in individuals. To tackle these challenges, we propose a novel conditional generative framework capable of producing counterfactual samples under time-varying treatment, without the need for explicit density estimation. Our method carefully addresses the distribution mismatch between the observed and counterfactual distributions via a loss function based on inverse probability weighting. We present a thorough evaluation of our method using both synthetic and real-world data. Our results demonstrate that our method is capable of generating high-quality counterfactual samples and outperforms the state-of-the-art baselines.

相關內容

Hallucinations and unfaithful synthesis due to inaccurate prompts with insufficient semantic details are widely observed in multimodal generative models. A prevalent strategy to align multiple modalities is to fine-tune the generator with a large number of annotated text-image pairs. However, such a procedure is labor-consuming and resource-draining. The key question we ask is: can we enhance the quality and faithfulness of text-driven generative models beyond extensive text-image pair annotations? To address this question, we propose Knowledge Pursuit Prompting (KPP), a zero-shot framework that iteratively incorporates external knowledge to help generators produce reliable visual content. Instead of training generators to handle generic prompts, KPP employs a recursive knowledge query process to gather informative external facts from the knowledge base, instructs a language model to compress the acquired knowledge for prompt refinement, and utilizes text-driven generators for visual synthesis. The entire process is zero-shot, without accessing the architectures and parameters of generative models. We evaluate the framework across multiple text-driven generative tasks (image, 3D rendering, and video) on datasets of different domains. We further demonstrate the extensibility and adaptability of KPP through varying foundation model bases and instructions. Our results show that KPP is capable of generating faithful and semantically rich content across diverse visual domains, offering a promising solution to improve multimodal generative models.

Psychological stress detection is an important task for mental healthcare research, but there has been little prior work investigating the effectiveness of psychological stress models on minority individuals, who are especially vulnerable to poor mental health outcomes. In this work, we use the related task of minority stress detection to evaluate the ability of psychological stress models to understand the language of sexual and gender minorities. We find that traditional psychological stress models underperform on minority stress detection, and we propose using emotion-infused models to reduce that performance disparity. We further demonstrate that multi-task psychological stress models outperform the current state-of-the-art for minority stress detection without directly training on minority stress data. We provide explanatory analysis showing that minority communities have different distributions of emotions than the general population and that emotion-infused models improve the performance of stress models on underrepresented groups because of their effectiveness in low-data environments, and we propose that integrating emotions may benefit underrepresented groups in other mental health detection tasks.

Deep neural networks have played a crucial part in many critical domains, such as autonomous driving, face recognition, and medical diagnosis. However, deep neural networks are facing security threats from backdoor attacks and can be manipulated into attacker-decided behaviors by the backdoor attacker. To defend the backdoor, prior research has focused on using clean data to remove backdoor attacks before model deployment. In this paper, we investigate the possibility of defending against backdoor attacks at test time by utilizing partially poisoned data to remove the backdoor from the model. To address the problem, a two-stage method Test-Time Backdoor Defense (TTBD) is proposed. In the first stage, we propose a backdoor sample detection method DDP to identify poisoned samples from a batch of mixed, partially poisoned samples. Once the poisoned samples are detected, we employ Shapley estimation to calculate the contribution of each neuron's significance in the network, locate the poisoned neurons, and prune them to remove backdoor in the models. Our experiments demonstrate that TTBD removes the backdoor successfully with only a batch of partially poisoned data across different model architectures and datasets against different types of backdoor attacks.

Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography, yet they struggle to generalize in uncalibrated modalities -- notoriously magnetic resonance imaging (MRI), where performance is highly sensitive to the differences in MR contrast, resolution, and orientation between the training and testing data. This prevents broad applicability to the diverse clinical acquisition protocols in the real world. We introduce Brain-ID, a robust feature representation learning strategy for brain imaging, which is contrast-agnostic, and robust to the brain anatomy of each subject regardless of the appearance of acquired images (i.e., deformation, contrast, resolution, orientation, artifacts, etc). Brain-ID is trained entirely on synthetic data, and easily adapts to downstream tasks with our proposed simple one-layer solution. We validate the robustness of Brain-ID features, and evaluate their performance in a variety of downstream applications, including both contrast-independent (anatomy reconstruction/contrast synthesis, brain segmentation), and contrast-dependent (super-resolution, bias field estimation) tasks. Extensive experiments on 6 public datasets demonstrate that Brain-ID achieves state-of-the-art performance in all tasks, and more importantly, preserves its performance when only limited training data is available.

Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司