亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As Large Language Models (LLMs) grow increasingly powerful, ensuring their safety and alignment with human values remains a critical challenge. Ideally, LLMs should provide informative responses while avoiding the disclosure of harmful or sensitive information. However, current alignment approaches, which rely heavily on refusal strategies, such as training models to completely reject harmful prompts or applying coarse filters are limited by their binary nature. These methods either fully deny access to information or grant it without sufficient nuance, leading to overly cautious responses or failures to detect subtle harmful content. For example, LLMs may refuse to provide basic, public information about medication due to misuse concerns. Moreover, these refusal-based methods struggle to handle mixed-content scenarios and lack the ability to adapt to context-dependent sensitivities, which can result in over-censorship of benign content. To overcome these challenges, we introduce HiddenGuard, a novel framework for fine-grained, safe generation in LLMs. HiddenGuard incorporates Prism (rePresentation Router for In-Stream Moderation), which operates alongside the LLM to enable real-time, token-level detection and redaction of harmful content by leveraging intermediate hidden states. This fine-grained approach allows for more nuanced, context-aware moderation, enabling the model to generate informative responses while selectively redacting or replacing sensitive information, rather than outright refusal. We also contribute a comprehensive dataset with token-level fine-grained annotations of potentially harmful information across diverse contexts. Our experiments demonstrate that HiddenGuard achieves over 90% in F1 score for detecting and redacting harmful content while preserving the overall utility and informativeness of the model's responses.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 可辨認的 · Performer · 操作 ·
2024 年 11 月 12 日

The widespread presence of Use-After-Free (UAF) vulnerabilities poses a serious threat to software security, with dangling pointers being considered the primary cause of these vulnerabilities. However, existing methods for defending against UAF vulnerabilities by eliminating dangling pointers need to interrupt the program's execution when encountering pointer assignment operations in order to store the memory addresses of the pointers in a specific data structure. This makes these methods not lightweight. To overcome this drawback, we propose a novel approach called LightDE. This method does not require storing the memory addresses of pointers during program execution. LightDE uses our proposed structure-sensitive pointer analysis method to determine which objects pointers point to and stores the pointing relationships in the program's data segment during program compilation. Since LightDE only needs to verify if pointers identified by the pointer analysis point to released objects when eliminating dangling pointers, it is very lightweight. Our experimental results show that LightDE can effectively defend against UAF vulnerabilities and the performance overhead it introduces is very low.

As large language models (LLMs) grow more powerful, ensuring their safety against misuse becomes crucial. While researchers have focused on developing robust defenses, no method has yet achieved complete invulnerability to attacks. We propose an alternative approach: instead of seeking perfect adversarial robustness, we develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks. To study this setting, we develop RapidResponseBench, a benchmark that measures a defense's robustness against various jailbreak strategies after adapting to a few observed examples. We evaluate five rapid response methods, all of which use jailbreak proliferation, where we automatically generate additional jailbreaks similar to the examples observed. Our strongest method, which fine-tunes an input classifier to block proliferated jailbreaks, reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set, having observed just one example of each jailbreaking strategy. Moreover, further studies suggest that the quality of proliferation model and number of proliferated examples play an key role in the effectiveness of this defense. Overall, our results highlight the potential of responding rapidly to novel jailbreaks to limit LLM misuse.

Integrating cognitive ergonomics with LLMs is crucial for improving safety, reliability, and user satisfaction in human-AI interactions. Current LLM designs often lack this integration, resulting in systems that may not fully align with human cognitive capabilities and limitations. This oversight exacerbates biases in LLM outputs and leads to suboptimal user experiences due to inconsistent application of user-centered design principles. Researchers are increasingly leveraging NLP, particularly LLMs, to model and understand human behavior across social sciences, psychology, psychiatry, health, and neuroscience. Our position paper explores the need to integrate cognitive ergonomics into LLM design, providing a comprehensive framework and practical guidelines for ethical development. By addressing these challenges, we aim to advance safer, more reliable, and ethically sound human-AI interactions.

Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.

Auditing Large Language Models (LLMs) to discover their biases and preferences is an emerging challenge in creating Responsible Artificial Intelligence (AI). While various methods have been proposed to elicit the preferences of such models, countermeasures have been taken by LLM trainers, such that LLMs hide, obfuscate or point blank refuse to disclosure their positions on certain subjects. This paper presents PRISM, a flexible, inquiry-based methodology for auditing LLMs - that seeks to illicit such positions indirectly through task-based inquiry prompting rather than direct inquiry of said preferences. To demonstrate the utility of the methodology, we applied PRISM on the Political Compass Test, where we assessed the political leanings of twenty-one LLMs from seven providers. We show LLMs, by default, espouse positions that are economically left and socially liberal (consistent with prior work). We also show the space of positions that these models are willing to espouse - where some models are more constrained and less compliant than others - while others are more neutral and objective. In sum, PRISM can more reliably probe and audit LLMs to understand their preferences, biases and constraints.

As Large Language Models (LLMs) continue to grow, reducing costs and alleviating GPU demands has become increasingly critical. However, existing schedulers primarily target either GPU compute or Key-Value Cache (KVC) utilization, failing to fully optimize both GPU compute and KVC usage during each iteration or guarantee timely KVC allocations when needed. To address these challenges, we conducted a trace-based experimental analysis and made insightful observations, leading to the design of a system called EcoServe. EcoServe maximizes multi-resource utilization while ensuring service-level objective (SLO) guarantees in LLM serving. To enable adding prompts to a batch to maximize GPU utilization in each iteration, EcoServe maintains separate waiting queues for prompt processing tasks (PTs) and generation tasks (GTs). It batches GTs with the same predicted response lengths (RL) to save scheduling time and allocates KVC space for the predicted RL to avoid KVC allocation failures. It further has a novel KVC pipelining method, allowing sharing allocated but unused KVC space to enhance KVC utilization. In addition, it prioritizes queued requests that occupy more KVC to release KVC earlier and satisfy request service-level-objective (SLO). Experimental results demonstrate that EcoServe increases throughput by up to 4$\times$ with the same level of latency, generates up to 91\% lower job completion time and up to 91\% higher SLO satisfaction ratio compared to vLLM. It also reduces the number of GPUs used in DistServe by up to 78\% while maintaining the same level of goodput.

We investigate the entity alignment (EA) problem with unlabeled dangling cases, meaning that partial entities have no counterparts in the other knowledge graph (KG), and this type of entity remains unlabeled. To address this challenge, we propose the framework \textit{Lambda} for dangling detection and then entity alignment. Lambda features a GNN-based encoder called KEESA with spectral contrastive learning for EA and a positive-unlabeled learning algorithm for dangling detection called iPULE. iPULE offers theoretical guarantees of unbiasedness, uniform deviation bounds, and convergence. Experimental results demonstrate that each component contributes to overall performances that are superior to baselines, even when baselines additionally exploit 30\% of dangling entities labeled for training.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司