亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For real $\alpha\in [0,1)$ and a hypergraph $G$, the $\alpha$-spectral radius of $G$ is the largest eigenvalue of the matrix $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$, where $A(G)$ is the adjacency matrix of $G$, which is a symmetric matrix with zero diagonal such that for distinct vertices $u,v$ of $G$, the $(u,v)$-entry of $A(G)$ is exactly the number of edges containing both $u$ and $v$, and $D(G)$ is the diagonal matrix of row sums of $A(G)$. We study the $\alpha$-spectral radius of a hypergraph that is uniform or not necessarily uniform. We propose some local grafting operations that increase or decrease the $\alpha$-spectral radius of a hypergraph. We determine the unique hypergraphs with maximum $\alpha$-spectral radius among $k$-uniform hypertrees, among $k$-uniform unicyclic hypergraphs, and among $k$-uniform hypergraphs with fixed number of pendant edges. We also determine the unique hypertrees with maximum $\alpha$-spectral radius among hypertrees with given number of vertices and edges, the unique hypertrees with the first three largest (two smallest, respectively) $\alpha$-spectral radii among hypertrees with given number of vertices, the unique hypertrees with minimum $\alpha$-spectral radius among the hypertrees that are not $2$-uniform, the unique hypergraphs with the first two largest (smallest, respectively) $\alpha$-spectral radii among unicyclic hypergraphs with given number of vertices, and the unique hypergraphs with maximum $\alpha$-spectral radius among hypergraphs with fixed number of pendant edges.

相關內容

The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels -- Mat\'ern and squared exponential -- in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Mat\'ern case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.

Two new omnibus tests of uniformity for data on the hypersphere are proposed. The new test statistics exploit closed-form expressions for orthogonal polynomials, feature tuning parameters, and are related to a "smooth maximum" function and the Poisson kernel. We obtain exact moments of the test statistics under uniformity and rotationally symmetric alternatives, and give their null asymptotic distributions. We consider approximate oracle tuning parameters that maximize the power of the tests against known generic alternatives and provide tests that estimate oracle parameters through cross-validated procedures while maintaining the significance level. Numerical experiments explore the effectiveness of null asymptotic distributions and the accuracy of inexpensive approximations of exact null distributions. A simulation study compares the powers of the new tests with other tests of the Sobolev class, showing the benefits of the former. The proposed tests are applied to the study of the (seemingly uniform) nursing times of wild polar bears.

In this work, we focus on the Bipartite Stochastic Block Model (BiSBM), a popular model for bipartite graphs with a community structure. We consider the high dimensional setting where the number $n_1$ of type I nodes is far smaller than the number $n_2$ of type II nodes. The recent work of Braun and Tyagi (2022) established a sufficient and necessary condition on the sparsity level $p_{max}$ of the bipartite graph to be able to recover the latent partition of type I nodes. They proposed an iterative method that extends the one proposed by Ndaoud et al. (2022) to achieve this goal. Their method requires a good enough initialization, usually obtained by a spectral method, but empirical results showed that the refinement algorithm doesn't improve much the performance of the spectral method. This suggests that the spectral achieves exact recovery in the same regime as the refinement method. We show that it is indeed the case by providing new entrywise bounds on the eigenvectors of the similarity matrix used by the spectral method. Our analysis extend the framework of Lei (2019) that only applies to symmetric matrices with limited dependencies. As an important technical step, we also derive an improved concentration inequality for similarity matrices.

The Erd\"os Renyi graph is a popular choice to model network data as it is parsimoniously parametrized, straightforward to interprete and easy to estimate. However, it has limited suitability in practice, since it often fails to capture crucial characteristics of real-world networks. To check the adequacy of this model, we propose a novel class of goodness-of-fit tests for homogeneous Erd\"os Renyi models against heterogeneous alternatives that allow for nonconstant edge probabilities. We allow for asymptotically dense and sparse networks. The tests are based on graph functionals that cover a broad class of network statistics for which we derive limiting distributions in a unified manner. The resulting class of asymptotic tests includes several existing tests as special cases. Further, we propose a parametric bootstrap and prove its consistency, which allows for performance improvements particularly for small network sizes and avoids the often tedious variance estimation for asymptotic tests. Moreover, we analyse the sensitivity of different goodness-of-fit test statistics that rely on popular choices of subgraphs. We evaluate the proposed class of tests and illustrate our theoretical findings by extensive simulations.

Graph Signal Filter used as dimensionality reduction in spectral clustering usually requires expensive eigenvalue estimation. We analyze the filter in an optimization setting and propose to use four orthogonalization-free methods by optimizing objective functions as dimensionality reduction in spectral clustering. The proposed methods do not utilize any orthogonalization, which is known as not well scalable in a parallel computing environment. Our methods theoretically construct adequate feature space, which is, at most, a weighted alteration to the eigenspace of a normalized Laplacian matrix. We numerically hypothesize that the proposed methods are equivalent in clustering quality to the ideal Graph Signal Filter, which exploits the exact eigenvalue needed without expensive eigenvalue estimation. Numerical results show that the proposed methods outperform Power Iteration-based methods and Graph Signal Filter in clustering quality and computation cost. Unlike Power Iteration-based methods and Graph Signal Filter which require random signal input, our methods are able to utilize available initialization in the streaming graph scenarios. Additionally, numerical results show that our methods outperform ARPACK and are faster than LOBPCG in the streaming graph scenarios. We also present numerical results showing the scalability of our methods in multithreading and multiprocessing implementations to facilitate parallel spectral clustering.

Differential flatness enables efficient planning and control for underactuated robotic systems, but we lack a systematic and practical means of identifying a flat output (or determining whether one exists) for an arbitrary robotic system. In this work, we leverage recent results elucidating the role of symmetry in constructing flat outputs for free-flying robotic systems. Using the tools of Riemannian geometry, Lie group theory, and differential forms, we cast the search for a globally valid, equivariant flat output as an optimization problem. An approximate transcription of this continuum formulation to a quadratic program is performed, and its solutions for two example systems achieve precise agreement with the known closed-form flat outputs. Our results point towards a systematic, automated approach to numerically identify geometric flat outputs directly from the system model, particularly useful when complexity renders pen and paper analysis intractable.

In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the subsystems are only almost globally asymptotically stable. The result is extended to upper triangular systems of arbitrary size. In particular, if the unforced subsystems are almost globally asymptotically stable and their only chain recurrent points are hyperbolic equilibria, then the boundedness of forward trajectories is sufficient for the almost global asymptotic stability of the full upper triangular system. We show that unboundedness of such cascades is prohibited by growth rate conditions on the interconnection term and a Lyapunov function for the unforced outer subsystem, and the required structure for the chain recurrent set is enjoyed by classes of systems common in geometric control e.g. dissipative mechanical systems. Our results stand in contrast to prior works that require either time scale separation, prohibitively strong disturbance robustness properties, or global asymptotic stability in the subsystems.

We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued $(p,q)$-forms on K\"ahler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, $\mathbb{P}^3$ and a Calabi-Yau one-fold (a torus), we compare our numerics with exact results available in the literature and find complete agreement. For the third example, the Fermat quintic three-fold, there are no known analytic results, so our numerical calculations are the first of their kind. The resulting spectra pass a number of non-trivial checks that arise from Serre duality and the Hodge decomposition. The outputs of our algorithm include all the ingredients one needs to compute physical Yukawa couplings in string compactifications.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.

北京阿比特科技有限公司