亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the fair allocation of mixtures of indivisible goods and chores under lexicographic preferences$\unicode{x2014}$a subdomain of additive preferences. A prominent fairness notion for allocating indivisible items is envy-freeness up to any item (EFX). Yet, its existence and computation has remained a notable open problem. By identifying a class of instances with "terrible chores", we show that determining the existence of an EFX allocation is NP-complete. This result immediately implies the intractability of EFX under additive preferences. Nonetheless, we propose a natural subclass of lexicographic preferences for which an EFX and Pareto optimal (PO) allocation is guaranteed to exist and can be computed efficiently for any mixed instance. Focusing on two weaker fairness notions, we investigate finding EF1 and PO allocations for special instances with terrible chores, and show that MMS and PO allocations can be computed efficiently for any mixed instance with lexicographic preferences.

相關內容

Large Language Models (LLMs) have achieved great success in various natural language tasks. It has aroused much interest in evaluating the specific reasoning capability of LLMs, such as multilingual reasoning and mathematical reasoning. However, as one of the key reasoning perspectives, logical reasoning capability has not yet been thoroughly evaluated. In this work, we aim to bridge those gaps and provide comprehensive evaluations. Firstly, to offer systematic evaluations, this paper selects fifteen typical logical reasoning datasets and organizes them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Also, to uncover the logical flaws of LLMs, bad cases will be attributed to five error types from two dimensions. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3K samples and covers deductive, inductive and abductive reasoning settings. Based on the in-depth evaluations, this paper finally concludes the ability maps of logical reasoning capability from six dimensions (i.e., correct, rigorous, self-aware, active, oriented and no hallucination). It reflects the pros and cons of LLMs and gives guiding directions for future works.

We propose an original and general NOn-SEgmental (NOSE) approach for the detection of multiple change-points. NOSE identifies change-points by the non-negligibility of posterior estimates of the jump heights. Alternatively, under the Bayesian paradigm, NOSE treats the step-wise signal as a global infinite dimensional parameter drawn from a proposed process of atomic representation, where the random jump heights determine the locations and the number of change-points simultaneously. The random jump heights are further modeled by a Gamma-Indian buffet process shrinkage prior under the form of discrete spike-and-slab. The induced maximum a posteriori estimates of the jump heights are consistent and enjoy zerodiminishing false negative rate in discrimination under a 3-sigma rule. The success of NOSE is guaranteed by the posterior inferential results such as the minimaxity of posterior contraction rate, and posterior consistency of both locations and the number of abrupt changes. NOSE is applicable and effective to detect scale shifts, mean shifts, and structural changes in regression coefficients under linear or autoregression models. Comprehensive simulations and several real-world examples demonstrate the superiority of NOSE in detecting abrupt changes under various data settings.

In this paper, we address the problem of distributed power allocation in a $K$ user fading multiple access wiretap channel, where global channel state information is limited, i.e., each user has knowledge of their own channel state with respect to Bob and Eve but only knows the distribution of other users' channel states. We model this problem as a Bayesian game, where each user is assumed to selfishly maximize his average \emph{secrecy capacity} with partial channel state information. In this work, we first prove that there is a unique Bayesian equilibrium in the proposed game. Additionally, the price of anarchy is calculated to measure the efficiency of the equilibrium solution. We also propose a fast convergent iterative algorithm for power allocation. Finally, the results are validated using simulation results.

Cracks provide an essential indicator of infrastructure performance degradation, and achieving high-precision pixel-level crack segmentation is an issue of concern. Unlike the common research paradigms that adopt novel artificial intelligence (AI) methods directly, this paper examines the inherent characteristics of cracks so as to introduce boundary features into crack identification and then builds a boundary guidance crack segmentation model (BGCrack) with targeted structures and modules, including a high frequency module, global information modeling module, joint optimization module, etc. Extensive experimental results verify the feasibility of the proposed designs and the effectiveness of the edge information in improving segmentation results. In addition, considering that notable open-source datasets mainly consist of asphalt pavement cracks because of ease of access, there is no standard and widely recognized dataset yet for steel structures, one of the primary structural forms in civil infrastructure. This paper provides a steel crack dataset that establishes a unified and fair benchmark for the identification of steel cracks.

With the introduction of machine learning in high-stakes decision making, ensuring algorithmic fairness has become an increasingly important problem to solve. In response to this, many mathematical definitions of fairness have been proposed, and a variety of optimisation techniques have been developed, all designed to maximise a defined notion of fairness. However, fair solutions are reliant on the quality of the training data, and can be highly sensitive to noise. Recent studies have shown that robustness (the ability for a model to perform well on unseen data) plays a significant role in the type of strategy that should be used when approaching a new problem and, hence, measuring the robustness of these strategies has become a fundamental problem. In this work, we therefore propose a new criterion to measure the robustness of various fairness optimisation strategies - the robustness ratio. We conduct multiple extensive experiments on five bench mark fairness data sets using three of the most popular fairness strategies with respect to four of the most popular definitions of fairness. Our experiments empirically show that fairness methods that rely on threshold optimisation are very sensitive to noise in all the evaluated data sets, despite mostly outperforming other methods. This is in contrast to the other two methods, which are less fair for low noise scenarios but fairer for high noise ones. To the best of our knowledge, we are the first to quantitatively evaluate the robustness of fairness optimisation strategies. This can potentially can serve as a guideline in choosing the most suitable fairness strategy for various data sets.

The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior are mostly focused on device identification, which is a simpler task than authentication. To address these issues, an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer autoencoders is proposed in this work. This solution leverages the inherent imperfections and variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, unique fingerprints for each device are created. The performance samples are considered as time series data and used to train anomaly detection transformer models, one per device. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi devices. After a pool of experiments, the model from each device is able to individually authenticate it between the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74+-0.13 and an average maximum False Positive Rate (FPR) of 0.06+-0.09 demonstrate the effectiveness of this approach in enhancing authentication, security, and trust in crowdsensing applications.

With increasing automation, drivers' role progressively transitions from active operators to passive system supervisors, affecting their behaviour and cognitive processes. This study aims to understand better attention allocation and perceived cognitive load in manual, L2, and L3 driving in a realistic environment. We conducted a test-track experiment with 30 participants. While driving a prototype automated vehicle, participants were exposed to a passive auditory oddball task and their EEG was recorded. We studied the P3a ERP component elicited by novel environmental cues, an index of attention resources used to process the stimuli. The self-reported cognitive load was assessed using the NASA-TLX. Our findings revealed no significant difference in perceived cognitive load between manual and L2 driving, with L3 driving demonstrating a lower self-reported cognitive load. Despite this, P3a mean amplitude was highest during manual driving, indicating greater attention allocation towards processing environmental sounds compared to L2 and L3 driving. We argue that the need to integrate environmental information might be attenuated in L2 and L3 driving. Further empirical evidence is necessary to understand whether the decreased processing of environmental stimuli is due to top-down attention control leading to attention withdrawal or a lack of available resources due to high cognitive load. To the best of our knowledge, this study is the first attempt to use the passive oddball paradigm outside the laboratory. The insights of this study have significant implications for automation safety and user interface design.

Concept-based models perform prediction using a set of concepts that are interpretable to stakeholders. However, such models often involve a fixed, large number of concepts, which may place a substantial cognitive load on stakeholders. We propose Selective COncept Models (SCOMs) which make predictions using only a subset of concepts and can be customised by stakeholders at test-time according to their preferences. We show that SCOMs only require a fraction of the total concepts to achieve optimal accuracy on multiple real-world datasets. Further, we collect and release a new dataset, CUB-Sel, consisting of human concept set selections for 900 bird images from the popular CUB dataset. Using CUB-Sel, we show that humans have unique individual preferences for the choice of concepts they prefer to reason about, and struggle to identify the most theoretically informative concepts. The customisation and concept selection provided by SCOM improves the efficiency of interpretation and intervention for stakeholders.

Federated learning (FL) as distributed machine learning has gained popularity as privacy-aware Machine Learning (ML) systems have emerged as a technique that prevents privacy leakage by building a global model and by conducting individualized training of decentralized edge clients on their own private data. The existing works, however, employ privacy mechanisms such as Secure Multiparty Computing (SMC), Differential Privacy (DP), etc. Which are immensely susceptible to interference, massive computational overhead, low accuracy, etc. With the increasingly broad deployment of FL systems, it is challenging to ensure fairness and maintain active client participation in FL systems. Very few works ensure reasonably satisfactory performances for the numerous diverse clients and fail to prevent potential bias against particular demographics in FL systems. The current efforts fail to strike a compromise between privacy, fairness, and model performance in FL systems and are vulnerable to a number of additional problems. In this paper, we provide a comprehensive survey stating the basic concepts of FL, the existing privacy challenges, techniques, and relevant works concerning privacy in FL. We also provide an extensive overview of the increasing fairness challenges, existing fairness notions, and the limited works that attempt both privacy and fairness in FL. By comprehensively describing the existing FL systems, we present the potential future directions pertaining to the challenges of privacy-preserving and fairness-aware FL systems.

Latent diffusion models achieve state-of-the-art performance on a variety of generative tasks, such as image synthesis and image editing. However, the robustness of latent diffusion models is not well studied. Previous works only focus on the adversarial attacks against the encoder or the output image under white-box settings, regardless of the denoising process. Therefore, in this paper, we aim to analyze the robustness of latent diffusion models more thoroughly. We first study the influence of the components inside latent diffusion models on their white-box robustness. In addition to white-box scenarios, we evaluate the black-box robustness of latent diffusion models via transfer attacks, where we consider both prompt-transfer and model-transfer settings and possible defense mechanisms. However, all these explorations need a comprehensive benchmark dataset, which is missing in the literature. Therefore, to facilitate the research of the robustness of latent diffusion models, we propose two automatic dataset construction pipelines for two kinds of image editing models and release the whole dataset. Our code and dataset are available at \url{//github.com/jpzhang1810/LDM-Robustness}.

北京阿比特科技有限公司