亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we study the rate-distortion function (RDF) for lossy compression of asynchronously-sampled continuous-time (CT) wide-sense cyclostationary (WSCS) Gaussian processes with memory. As the case of synchronous sampling, i.e., when the sampling interval is commensurate with the period of the cyclostationary statistics, has already been studied, we focus on discrete-time (DT) processes obtained by asynchronous sampling, i.e., when the sampling interval is incommensurate with the period of the cyclostationary statistics of the CT WSCS source process. It is further assumed that the sampling interval is smaller than the maximal autocorrelation length of the CT source process, which implies that the DT process possesses memory. Thus, the sampled process is a DT wide-sense almost cyclostationary (WSACS) processes with memory. This problem is motivated by the fact that man-made communications signals are modelled as CT WSCS processes; hence, applications of such sampling include, e.g., compress-and-forward relaying and recording systems. The main challenge follows because, with asynchronous sampling, the DT sampled process is not information-stable, and hence the characterization of its RDF should be carried out within the information-spectrum framework instead of using conventional information-theoretic arguments. This work expands upon our previous work which addressed the special case in which the DT process is independent across time. The existence of dependence between the samples requires new tools to obtain the characterization of the RDF.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

The sample efficiency of Bayesian optimization algorithms depends on carefully crafted acquisition functions (AFs) guiding the sequential collection of function evaluations. The best-performing AF can vary significantly across optimization problems, often requiring ad-hoc and problem-specific choices. This work tackles the challenge of designing novel AFs that perform well across a variety of experimental settings. Based on FunSearch, a recent work using Large Language Models (LLMs) for discovery in mathematical sciences, we propose FunBO, an LLM-based method that can be used to learn new AFs written in computer code by leveraging access to a limited number of evaluations for a set of objective functions. We provide the analytic expression of all discovered AFs and evaluate them on various global optimization benchmarks and hyperparameter optimization tasks. We show how FunBO identifies AFs that generalize well in and out of the training distribution of functions, thus outperforming established general-purpose AFs and achieving competitive performance against AFs that are customized to specific function types and are learned via transfer-learning algorithms.

In the realm of computer systems, efficient utilisation of the CPU (Central Processing Unit) has always been a paramount concern. Researchers and engineers have long sought ways to optimise process execution on the CPU, leading to the emergence of CPU scheduling as a field of study. This research proposes a novel algorithm for batch processing that operates on a preemptive model, dynamically assigning priorities based on a robust ratio, employing a dynamic time slice, and utilising periodic sorting technique to achieve fairness. By engineering this responsive and fair model, the proposed algorithm strikes a delicate balance between efficiency and fairness, providing an optimised solution for batch scheduling while ensuring system responsiveness.

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2 and 3-layer networks with piecewise linear activations, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in absolute value and symmetrized ReLU networks, a third layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships (independent of the observer's viewpoint) using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data. Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (`shop north of school') generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.

We present High-Density Visual Particle Dynamics (HD-VPD), a learned world model that can emulate the physical dynamics of real scenes by processing massive latent point clouds containing 100K+ particles. To enable efficiency at this scale, we introduce a novel family of Point Cloud Transformers (PCTs) called Interlacers leveraging intertwined linear-attention Performer layers and graph-based neighbour attention layers. We demonstrate the capabilities of HD-VPD by modeling the dynamics of high degree-of-freedom bi-manual robots with two RGB-D cameras. Compared to the previous graph neural network approach, our Interlacer dynamics is twice as fast with the same prediction quality, and can achieve higher quality using 4x as many particles. We illustrate how HD-VPD can evaluate motion plan quality with robotic box pushing and can grasping tasks. See videos and particle dynamics rendered by HD-VPD at //sites.google.com/view/hd-vpd.

We provide a collection of results on covariance expressions between Monte Carlo based multi-output mean, variance, and Sobol main effect variance estimators from an ensemble of models. These covariances can be used within multi-fidelity uncertainty quantification strategies that seek to reduce the estimator variance of high-fidelity Monte Carlo estimators with an ensemble of low-fidelity models. Such covariance expressions are required within approaches like the approximate control variate and multi-level best linear unbiased estimator. While the literature provides these expressions for some single-output cases such as mean and variance, our results are relevant to both multiple function outputs and multiple statistics across any sampling strategy. Following the description of these results, we use them within an approximate control variate scheme to show that leveraging multiple outputs can dramatically reduce estimator variance compared to single-output approaches. Synthetic examples are used to highlight the effects of optimal sample allocation and pilot sample estimation. A flight-trajectory simulation of entry, descent, and landing is used to demonstrate multi-output estimation in practical applications.

Few-shot anomaly detection methods can effectively address data collecting difficulty in industrial scenarios. Compared to 2D few-shot anomaly detection (2D-FSAD), 3D few-shot anomaly detection (3D-FSAD) is still an unexplored but essential task. In this paper, we propose CLIP3D-AD, an efficient 3D-FSAD method extended on CLIP. We successfully transfer strong generalization ability of CLIP into 3D-FSAD. Specifically, we synthesize anomalous images on given normal images as sample pairs to adapt CLIP for 3D anomaly classification and segmentation. For classification, we introduce an image adapter and a text adapter to fine-tune global visual features and text features. Meanwhile, we propose a coarse-to-fine decoder to fuse and facilitate intermediate multi-layer visual representations of CLIP. To benefit from geometry information of point cloud and eliminate modality and data discrepancy when processed by CLIP, we project and render point cloud to multi-view normal and anomalous images. Then we design multi-view fusion module to fuse features of multi-view images extracted by CLIP which are used to facilitate visual representations for further enhancing vision-language correlation. Extensive experiments demonstrate that our method has a competitive performance of 3D few-shot anomaly classification and segmentation on MVTec-3D AD dataset.

In an observational study, matching aims to create many small sets of similar treated and control units from initial samples that may differ substantially in order to permit more credible causal inferences. The problem of constructing matched sets may be formulated as an optimization problem, but it can be challenging to specify a single objective function that adequately captures all the design considerations at work. One solution, proposed by \citet{pimentel2019optimal} is to explore a family of matched designs that are Pareto optimal for multiple objective functions. We present an R package, \href{//github.com/ShichaoHan/MultiObjMatch}{\texttt{MultiObjMatch}}, that implements this multi-objective matching strategy using a network flow algorithm for several common design goals: marginal balance on important covariates, size of the matched sample, and average within-pair multivariate distances. We demonstrate the package's flexibility in exploring user-defined tradeoffs of interest via two case studies, a reanalysis of the canonical National Supported Work dataset and a novel analysis of a clinical dataset to estimate the impact of diabetic kidney disease on hospitalization costs.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司