Anomaly detection is commonly pursued as a one-class classification problem, where models can only learn from normal training samples, while being evaluated on both normal and abnormal test samples. Among the successful approaches for anomaly detection, a distinguished category of methods relies on predicting masked information (e.g. patches, future frames, etc.) and leveraging the reconstruction error with respect to the masked information as an abnormality score. Different from related methods, we propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block. The proposed self-supervised block is generic and can easily be incorporated into various state-of-the-art anomaly detection methods. Our block starts with a convolutional layer with dilated filters, where the center area of the receptive field is masked. The resulting activation maps are passed through a channel attention module. Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field. We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video, providing empirical evidence that shows considerable performance improvements on MVTec AD, Avenue, and ShanghaiTech.
Anomaly detection is a significant problem faced in several research areas. Detecting and correctly classifying something unseen as anomalous is a challenging problem that has been tackled in many different manners over the years. Generative Adversarial Networks (GANs) and the adversarial training process have been recently employed to face this task yielding remarkable results. In this paper we survey the principal GAN-based anomaly detection methods, highlighting their pros and cons. Our contributions are the empirical validation of the main GAN models for anomaly detection, the increase of the experimental results on different datasets and the public release of a complete Open Source toolbox for Anomaly Detection using GANs.
Transformer has been widely used for self-supervised pre-training in Natural Language Processing (NLP) and achieved great success. However, it has not been fully explored in visual self-supervised learning. Meanwhile, previous methods only consider the high-level feature and learning representation from a global perspective, which may fail to transfer to the downstream dense prediction tasks focusing on local features. In this paper, we present a novel Masked Self-supervised Transformer approach named MST, which can explicitly capture the local context of an image while preserving the global semantic information. Specifically, inspired by the Masked Language Modeling (MLM) in NLP, we propose a masked token strategy based on the multi-head self-attention map, which dynamically masks some tokens of local patches without damaging the crucial structure for self-supervised learning. More importantly, the masked tokens together with the remaining tokens are further recovered by a global image decoder, which preserves the spatial information of the image and is more friendly to the downstream dense prediction tasks. The experiments on multiple datasets demonstrate the effectiveness and generality of the proposed method. For instance, MST achieves Top-1 accuracy of 76.9% with DeiT-S only using 300-epoch pre-training by linear evaluation, which outperforms supervised methods with the same epoch by 0.4% and its comparable variant DINO by 1.0\%. For dense prediction tasks, MST also achieves 42.7% mAP on MS COCO object detection and 74.04% mIoU on Cityscapes segmentation only with 100-epoch pre-training.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Change Point Detection techniques aim to capture changes in trends and sequences in time-series data to describe the underlying behaviour of the system. Detecting changes and anomalies in the web services, the trend of applications usage can provide valuable insight towards the system, however, many existing approaches are done in a supervised manner, requiring well-labelled data. As the amount of data produced and captured by sensors are growing rapidly, it is getting harder and even impossible to annotate the data. Therefore, coming up with a self-supervised solution is a necessity these days. In this work, we propose TSCP a novel self-supervised technique for temporal change point detection, based on representation learning with Temporal Convolutional Network (TCN). To the best of our knowledge, our proposed method is the first method which employs Contrastive Learning for prediction with the aim change point detection. Through extensive evaluations, we demonstrate that our method outperforms multiple state-of-the-art change point detection and anomaly detection baselines, including those adopting either unsupervised or semi-supervised approach. TSCP is shown to improve both non-Deep learning- and Deep learning-based methods by 0.28 and 0.12 in terms of average F1-score across three datasets.
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
It is challenging for weakly supervised object detection network to precisely predict the positions of the objects, since there are no instance-level category annotations. Most existing methods tend to solve this problem by using a two-phase learning procedure, i.e., multiple instance learning detector followed by a fully supervised learning detector with bounding-box regression. Based on our observation, this procedure may lead to local minima for some object categories. In this paper, we propose to jointly train the two phases in an end-to-end manner to tackle this problem. Specifically, we design a single network with both multiple instance learning and bounding-box regression branches that share the same backbone. Meanwhile, a guided attention module using classification loss is added to the backbone for effectively extracting the implicit location information in the features. Experimental results on public datasets show that our method achieves state-of-the-art performance.
Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.
Deep convolutional neural networks have become a key element in the recent breakthrough of salient object detection. However, existing CNN-based methods are based on either patch-wise (region-wise) training and inference or fully convolutional networks. Methods in the former category are generally time-consuming due to severe storage and computational redundancies among overlapping patches. To overcome this deficiency, methods in the second category attempt to directly map a raw input image to a predicted dense saliency map in a single network forward pass. Though being very efficient, it is arduous for these methods to detect salient objects of different scales or salient regions with weak semantic information. In this paper, we develop hybrid contrast-oriented deep neural networks to overcome the aforementioned limitations. Each of our deep networks is composed of two complementary components, including a fully convolutional stream for dense prediction and a segment-level spatial pooling stream for sparse saliency inference. We further propose an attentional module that learns weight maps for fusing the two saliency predictions from these two streams. A tailored alternate scheme is designed to train these deep networks by fine-tuning pre-trained baseline models. Finally, a customized fully connected CRF model incorporating a salient contour feature embedding can be optionally applied as a post-processing step to improve spatial coherence and contour positioning in the fused result from these two streams. Extensive experiments on six benchmark datasets demonstrate that our proposed model can significantly outperform the state of the art in terms of all popular evaluation metrics.
Weakly supervised object detection has recently received much attention, since it only requires image-level labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this problem, which trains a weakly supervised learner and a strongly supervised learner jointly by enforcing partial feature sharing and prediction consistency. For object detection, taking WSDDN-like architecture as weakly supervised detector sub-network and Faster-RCNN-like architecture as strongly supervised detector sub-network, we propose an end-to-end Weakly Supervised Collaborative Detection Network. As there is no strong supervision available to train the Faster-RCNN-like sub-network, a new prediction consistency loss is defined to enforce consistency of predictions between the two sub-networks as well as within the Faster-RCNN-like sub-networks. At the same time, the two detectors are designed to partially share features to further guarantee the model consistency at perceptual level. Extensive experiments on PASCAL VOC 2007 and 2012 data sets have demonstrated the effectiveness of the proposed framework.